scholarly journals Measure the local dark matter density with LAMOST spectroscopic survey

2015 ◽  
Vol 11 (S317) ◽  
pp. 330-331
Author(s):  
Chao Liu ◽  
Qiran Xia ◽  
Shude Mao

AbstractThe local dark matter density plays the key role in the distribution of the dark matter halo near the Galactic disk. It will also answer whether a dark matter disk exists in the Milky Way. We measure the local dark matter density with LAMOST observed stars located at around the north Galactic pole. The selection effects of the observations are well considered and corrected. We find that the derived DM density, which is around 0.0159+0.0047−0.0057M⊙ pc−3 providing a flat local rotation curve.

2018 ◽  
Vol 617 ◽  
pp. A142 ◽  
Author(s):  
S. Sarkar ◽  
C. J. Jog

We study the vertical stellar distribution of the Milky Way thin disk in detail with particular focus on the outer disk. We treat the galactic disk as a gravitationally coupled, three-component system consisting of stars, atomic hydrogen gas, and molecular hydrogen gas in the gravitational field of the dark matter halo. The self-consistent vertical distribution for stars and gas in such a realistic system is obtained for radii between 4–22 kpc. The inclusion of an additional gravitating component constrains the vertical stellar distribution toward the mid-plane, so that the mid-plane density is higher, the disk thickness is reduced, and the vertical density profile is steeper than in the one-component, isothermal, stars-alone case. We show that the stellar distribution is constrained mainly by the gravitational field of gas and dark matter halo in the inner and the outer Galaxy, respectively. We find that the thickness of the stellar disk (measured as the half-width at half-maximum of the vertical density distribution) increases with radius, flaring steeply beyond R = 17 kpc. The disk thickness is reduced by a factor of 3–4 in the outer Galaxy as a result of the gravitational field of the halo, which may help the disk resist distortion at large radii. The disk would flare even more if the effect of dark matter halo were not taken into account. Thus it is crucially important to include the effect of the dark matter halo when determining the vertical structure and dynamics of a galactic disk in the outer region.


2020 ◽  
Vol 495 (4) ◽  
pp. 4828-4844 ◽  
Author(s):  
Rui Guo ◽  
Chao Liu ◽  
Shude Mao ◽  
Xiang-Xiang Xue ◽  
R J Long ◽  
...  

ABSTRACT We apply the vertical Jeans equation to the kinematics of Milky Way stars in the solar neighbourhood to measure the local dark matter density. More than 90 000 G- and K-type dwarf stars are selected from the cross-matched sample of LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope) fifth data release and Gaia second data release for our analyses. The mass models applied consist of a single exponential stellar disc, a razor thin gas disc, and a constant dark matter density. We first consider the simplified vertical Jeans equation that ignores the tilt term and assumes a flat rotation curve. Under a Gaussian prior on the total stellar surface density, the local dark matter density inferred from Markov chain Monte Carlo simulations is $0.0133_{-0.0022}^{+0.0024}\ {\rm M}_{\odot }\, {\rm pc}^{-3}$. The local dark matter densities for subsamples in an azimuthal angle range of −10° < ϕ < 5° are consistent within their 1σ errors. However, the northern and southern subsamples show a large discrepancy due to plateaux in the northern and southern vertical velocity dispersion profiles. These plateaux may be the cause of the different estimates of the dark matter density between the north and south. Taking the tilt term into account has little effect on the parameter estimations and does not explain the north and south asymmetry. Taking half of the difference of σz profiles as unknown systematic errors, we then obtain consistent measurements for the northern and southern subsamples. We discuss the influence of the vertical data range, the scale height of the tracer population, the vertical distribution of stars, and the sample size on the uncertainty of the determination of the local dark matter density.


2020 ◽  
Vol 240 ◽  
pp. 04002
Author(s):  
M. Dafa Wardana ◽  
Hesti Wulandari ◽  
Sulistiyowati ◽  
Akbar H. Khatami

Local dark matter density, ρdm, is one of the crucial astrophysical inputs for the estimation of detection rates in dark matter direct search experi- ments. Knowing the value also helps us to investigate the shape of the Galactic dark halo, which is of importance for indirect dark matter searches, as well as for various studies in astrophysics and cosmology. In this work, we performed kinematics study of stars in the solar neighborhood to determine the local dark matter density. As tracers we used 95,543 K-dwarfs from Gaia DR2 inside a heliocentric cylinder with a radius of 150 pc and height 200 pc above and below the Galactic mid plane. Their positions and motions were analyzed, assum- ing that the Galaxy is axisymmetric and the tracers are in dynamical equilib- rium. We applied Jeans and Poisson equations to relate the observed quantities, i.e. vertical position and velocity, with the local dark matter density. The tilt term in the Jeans equation is considered to be small and is therefore neglected. Galactic disk is modelled to consist of a single exponential stellar disk, a thin gas layer, and dark matter whose density is constant within the volume consid- ered. Marginalization for the free parameters was performed with Bayesian theorem using Markov Chain Monte Carlo (MCMC) method. We find that ρdm = 0.0116 ± 0.0012 MO/pc or ρdm = 0.439 ± 0.046 GeV/cm3, in agreement within the range of uncertainty with results of several previous studies.


2015 ◽  
Vol 114 (8) ◽  
Author(s):  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
A. G. Akhperjanian ◽  
E. O. Angüner ◽  
...  

2019 ◽  
Vol 491 (4) ◽  
pp. 4993-5014 ◽  
Author(s):  
Sushma Kurapati ◽  
Jayaram N Chengalur ◽  
Peter Kamphuis ◽  
Simon Pustilnik

ABSTRACT We construct mass models of eight gas rich dwarf galaxies that lie in the Lynx–Cancer void. From NFW fits to the dark matter halo profile, we find that the concentration parameters of haloes of void dwarf galaxies are similar to those of dwarf galaxies in normal density regions. We also measure the slope of the central dark matter density profiles, obtained by converting the rotation curves derived using 3D (fat) and 2D (ROTCUR) tilted ring fitting routines, into mass densities. We find that the average slope (α = −1.39 ± 0.19), obtained from 3D fitting is consistent with that expected from an NFW profile. On the other hand, the average slope measured using the 2D approach is closer to what would be expected for an isothermal profile. This suggests that systematic effects in velocity field analysis have a significant effect on the slope of the central dark matter density profiles. Given the modest number of galaxies we use for our analysis, it is important to check these results using a larger sample.


2020 ◽  
Vol 643 ◽  
pp. A75
Author(s):  
Jean-Baptiste Salomon ◽  
Olivier Bienaymé ◽  
Céline Reylé ◽  
Annie C. Robin ◽  
Benoit Famaey

In this study, we analyse the kinematics and dynamics of a homogeneous sample of red clump stars, selected from the second Gaia data release catalogue in the direction of the Galactic poles, at five different positions in the plane. The level of completeness of the sample at heights between 0.6 and 3.5 kpc was asserted through a comparison with the 2 Micron All Sky Survey catalogue. We show that both the density distribution and velocity dispersion are significantly more perturbed in the north than in the south in all analysed regions of our Galactic neighbourhoods. We provide a detailed assessment of these north-south asymmetries at large heights, which can provide useful constraints for models of the interaction of the Galactic disc with external perturbers. We proceeded to evaluate how such asymmetries could affect determinations of the dynamical matter density under equilibrium assumptions. We find that a Jeans analysis delivers relatively similar vertical forces and integrated dynamical surface densities at large heights above the plane in both hemispheres. At these heights, the densities of stars and gas are very low and the surface density is largely dominated by dark matter (DM), which allows us to estimate, separately in the north and in the south, the local dark matter density derived under equilibrium assumptions. In the presence of vertical perturbations, such values should be considered as an upper limit. This Jeans analysis yields values of the local dark matter density above 2 kpc, namely, ρDM ∼ 0.013 M⊙ pc−3 (∼0.509 GeV cm−3) in the perturbed northern hemisphere and ρDM ∼ 0.010 M⊙ pc−3 (∼0.374 GeV cm−3) in the much less perturbed south. As a comparison, we determine the local dark matter density by fitting a global phase-space distribution to the data. We end up with a value in the range of ρDM ∼ 0.011−0.014 M⊙ pc−3, which is in global agreement with the Jeans analysis. These results call for the further development of non-equilibrium methods with the aim of obtaining a more precise estimate for the dynamical matter density in the Galactic disc.


2012 ◽  
Vol 10 (H16) ◽  
pp. 346-346
Author(s):  
Ewa L. Łokas

AbstractOne of the scenarios for the formation of dwarf spheroidal galaxies in the Local Group proposes that the objects formed from late type dwarfs via tidal interaction with bigger galaxies such as the Milky Way and Andromeda. The scenario naturally explains the morphology-density relation observed for dwarf galaxies in the Local Group. Using N-body simulations we study the long-term tidal evolution of dwarf galaxies in the vicinity of the Milky Way. The dwarf galaxies were initially composed of stellar disks embedded in dark matter haloes of different inner density slopes including shallow ones recently obtained in N-body+hydro simulations of dwarf galaxy formation in isolation. Such progenitors were placed on five different orbits around the Milky Way and their evolution was followed for 10 Gyr. The outcome of the evolution, in terms of the mass loss, morphological transformation and randomization of stellar orbits depends very sensitively on the inner density slope of dark matter. The effects of tides are stronger for dwarfs with shallower slopes; they are more heavily stripped, in some cases down to the scale of ultra-faint satellites of the Milky Way or even dissolved completely with obvious implications for the missing satellites problem. The morphological evolution of the stellar component, from rotationally supported disks to spheroids dominated by random motions, also proceeds faster. In addition, bars which usually form at the first pericenter passage are created more easily and live longer in dwarfs with shallow dark matter density profiles on extended orbits.


2020 ◽  
Vol 499 (2) ◽  
pp. 2426-2444 ◽  
Author(s):  
Catherine E Fielder ◽  
Yao-Yuan Mao ◽  
Andrew R Zentner ◽  
Jeffrey A Newman ◽  
Hao-Yi Wu ◽  
...  

ABSTRACT Cold dark matter haloes consist of a relatively smooth dark matter component as well as a system of bound subhaloes. It is the prevailing practice to include all mass, including mass in subhaloes, in studies of halo density profiles in simulations. However, often in observational studies satellites are treated as having their own distinct dark matter density profiles in addition to the profile of the host. This difference can make comparisons between theoretical and observed results difficult. In this work, we investigate density profiles of the smooth components of host haloes by excluding mass contained within subhaloes. We find that the density profiles of the smooth halo component (without subhaloes) differ substantially from the conventional halo density profile, declining more rapidly at large radii. We also find that concentrations derived from smooth density profiles exhibit less scatter at fixed mass and a weaker mass dependence than standard concentrations. Both smooth and standard halo profiles can be described by a generalized Einasto profile, an Einasto profile with a modified central slope, with smaller residuals than either a Navarro–Frenk–White or Einasto profile. These results hold for both Milky Way-mass and cluster-mass haloes. This new characterization of smooth halo profiles can be useful for many analyses, such as lensing and dark matter annihilation, in which the smooth and clumpy components of a halo should be accounted for separately.


Sign in / Sign up

Export Citation Format

Share Document