scholarly journals Hiding in plain sight - red supergiant imposters? Super-AGB stars

2015 ◽  
Vol 11 (A29B) ◽  
pp. 446-446
Author(s):  
Carolyn Doherty ◽  
Pilar Gil-Pons ◽  
John Lattanzio ◽  
Lionel Siess

AbstractSuper Asymptotic Giant Branch (Super-AGB) stars reside in the mass range ≈ 6.5-10 M⊙ and bridge the divide between low/intermediate-mass and massive stars. They are characterised by off-centre carbon ignition prior to a thermally pulsing phase which can consist of many tens to even thousands of thermal pulses. With their high luminosities and very large, cool, red stellar envelopes, these stars appear seemingly identical to their slightly more massive red supergiant counterparts. Due to their similarities, super-AGB stars may therefore act as stellar imposters and contaminate red supergiant surveys. The final fate of super-AGB stars is also quite uncertain and depends primarily on the competition between the core growth and mass-loss rates. If the stellar envelope is removed prior to the core reaching ≈ 1.375 M⊙, an O-Ne white dwarf will remain, otherwise the star will undergo an electron-capture supernova (EC-SN) leaving behind a neutron star. We determine the relative fraction of super-AGB stars that end life as either an O-Ne white dwarf or as a neutron star, and provide a mass limit for the lowest mass supernova over a broad range of metallicities from the Z=0.02 to 0.0001.

2018 ◽  
Vol 14 (S343) ◽  
pp. 36-46
Author(s):  
Marcelo M. Miller Bertolami

AbstractThe transition from the asymptotic giant branch (AGB) to the final white dwarf (WD) stage is arguably the least understood phase in the evolution of single low- and intermediate-mass stars (0.8 ≲ MZAMS/M⊙ ≲ 8…10). Here we briefly review the progress in the last 50 years of the modeling of stars during the post-AGB phase. We show that although the main features, like the extreme mass dependency of post-AGB timescales were already present in the earliest post-AGB models, the quantitative values of the computed post-AGB timescales changed every time new physics was included in the modeling of post-AGB stars and their progenitors. Then we discuss the predictions and uncertainties of the latest available models regarding the evolutionary timescales of post-AGB stars.


2009 ◽  
Vol 26 (3) ◽  
pp. 161-167 ◽  
Author(s):  
S. Palmerini ◽  
M. Busso ◽  
E. Maiorca ◽  
R. Guandalini

AbstractWe present computations of nucleosynthesis in red giants and Asymptotic Giant Branch (AGB) stars of Population I experiencing extended mixing. The assumed physical cause for mass transport is the buoyancy of magnetized structures, according to recent suggestions. The peculiar property of such a mechanism is to allow for both fast and slow mixing phenomena, as required for reproducing the spread in Li abundances displayed by red giants and as discussed in an accompanying paper. We explore here the effects of this kind of mass transport on CNO and intermediate-mass nuclei and compare the results with the available evidence from evolved red giants and from the isotopic composition of presolar grains of AGB origin. It is found that a good general accord exists between predictions and measurements; in this framework we also show which type of observational data best constrains the various parameters. We conclude that magnetic buoyancy, allowing for mixing at rather different speeds, can be an interesting scenario to explore for explaining together the abundances of CNO nuclei and of Li.


2018 ◽  
Vol 14 (S343) ◽  
pp. 525-526 ◽  
Author(s):  
Devendra Raj Upadhyay ◽  
Lochan Khanal ◽  
Priyanka Hamal ◽  
Binil Aryal

AbstractThis paper presents mass, temperature profile, and the variation of Planck’s function in different regions around asymptotic giant branch (AGB) stars. The physics of the interstellar medium (ISM) is extremely complex because the medium is very inhomogeneous and is made of regions with fairly diverse physical conditions. We studied the dust environment such as flux, temperature, mass, and inclination angle of the cavity structure around C-rich asymptotic giant branch stars in 60 μm and 100 μm wavelengths band using Infrared Astronomical Survey. We observed the data of AGB stars named IRAS 01142+6306 and IRAS 04369+4501. Flexible image transport system image was downloaded from Sky View Observatory; we obtained the surrounding flux density using software Aladin v2.5. The average dust color temperature and mass are found to be 25.08 K, 23.20 K and 4.73 × ;1026 kg (0.00024 M⊙), 2.58 × 1028 kg (0.013 M⊙), respectively. The dust color temperature ranges from 18.76 K ± 3.16 K to 33.21K ± K and 22.84 K ± 0.18 K to 24.48 K ± 0.63 K. The isolated cavity like structure around the AGB stars has an extension of 45.67 pc × 17.02 pc and 42.25 pc × 17.76 pc, respectively. The core region is found to be edge-on having an inclination angle of 79.46° and 73.99°, respectively.


1989 ◽  
Vol 131 ◽  
pp. 463-472 ◽  
Author(s):  
Detlef Schönberner

Our understanding of the evolution of Central Stars of Planetary Nebulae (CPN) has made considerable progress during the last years. This was possible since consistent computations through the asymptotic giant branch (AGB), with thermal pulses and (in some cases) mass loss taken into account, became available (Schönberner, 1979, 1983; Kovetz and Harpaz, 1981; Harpaz and Kovetz, 1981; Iben, 1982, 1984; Wood and Faulkner, 1986). It turned out that the evolution depends very sensitively on the inital conditions on the AGB. More precisely, the evolution of an AGB remnant is a function of the phase of the thermal-pulse cycle during which this remnant was created on the tip of the AGB by the planetary-nebula (PN) formation process (Iben, 1984, 1987). This was first shown by Schönberner (1979), and then fully explored by Iben (1984). In short, two major modes of PAGB evolution to the white dwarf stage are possible, according to the two main phases of a thermally pulsing AGB star: the hydrogen-burning or helium-burning mode. If, for instance, the PN formation, i.e. the removal of the stellar envelope by mass loss, happens during a luminosity peak that follows a thermal pulse of the helium-burning shell, the remnant leaves the AGB while still burning helium as the main energy supplier (Härm and Schwarzschild, 1975). On the other hand, PN formation may also occur during the quiescent hydrogen-burning phase on the AGB, and the remnant continues then to burn mainly hydrogen on its way to becoming a white dwarf.


1983 ◽  
Vol 103 ◽  
pp. 267-280 ◽  
Author(s):  
Alvio Renzini

Several physical processes taking place during the red (super)giant phase of intermediate-mass stars have direct observational consequences for the subsequent nebular stage. These processes include: the regular wind and the envelope ejection, the thermal pulses during the AGB phase, the dredge-up processes, and the dust formation in expanding circumstellar envelopes. In this paper it is briefly discussed how such processes affect the mass range of PN nuclei and their evolution, and the PN lifetime, composition and dust content. The last section is devoted to a cursory discussion of PNe which can be generated by binary stars.


1991 ◽  
Vol 145 ◽  
pp. 257-274
Author(s):  
Icko Iben

A brief review is given of the structure of asymptotic giant branch (AGB) stars and of the characteristics of the thermal pulses which these stars experience. Following a pulse, model AGB stars with a large core mass easily dredge up fresh carbon, which is the main product of incomplete helium burning, and s-process isotopes, which are made as a consequence of the activation of the 22Ne neutron source. Model AGB stars of small core mass activate the 13C neutron source and produce s-process isotopes in nearly the solar system distribution. They also dredge up fresh carbon and s-process isotopes, but only if overshoot or some other form of “extra” mixing beyond the lower boundary of the convective envelope is invoked.


2019 ◽  
Vol 15 (S357) ◽  
pp. 158-161
Author(s):  
Lisa Löbling

AbstractIn the helium-rich intershell region of asymptotic giant branch (AGB) stars, slow neutron-capture nucleosynthesis produces heavy elements beyond iron. If the stars experience a final-flash of the He-burning shell, a pulse-driven convection zone establishes, the stars become hydrogen-deficient and exhibit former intershell material at their surfaces. In their subsequent evolution towards the white-dwarf cooling sequence, but still at constant luminosity, a strong stellar wind prevents diffusion to wipe out the information about AGB yields. We present and interpret the analysis results of hydrogen-rich and -deficient post-AGB stars, discuss difficulties in their analysis and review the implications on the understanding of post-AGB evolution.


2018 ◽  
Vol 613 ◽  
pp. A46 ◽  
Author(s):  
F. C. De Gerónimo ◽  
L. G. Althaus ◽  
A. H. Córsico ◽  
A. D. Romero ◽  
S. O. Kepler

Context. The thermally pulsing phase on the asymptotic giant branch (TP-AGB) is the last nuclear burning phase experienced by most low- and intermediate-mass stars. During this phase, the outer chemical stratification above the C/O core of the emerging white dwarf (WD) is built up. The chemical structure resulting from progenitor evolution strongly impacts the whole pulsation spectrum exhibited by ZZ Ceti stars, which are pulsating C/O core white dwarfs located on a narrow instability strip at Teff ~ 12 000 K. Several physical processes occurring during progenitor evolution strongly affect the chemical structure of these stars; those found during the TP-AGB phase are the most relevant for the pulsational properties of ZZ Ceti stars. Aims. We present a study of the impact of the chemical structure built up during the TP-AGB evolution on the stellar parameters inferred from asteroseismological fits of ZZ Ceti stars. Methods. Our analysis is based on a set of carbon–oxygen core white dwarf models with masses from 0.534 to 0.6463 M⊙ derived from full evolutionary computations from the ZAMS to the ZZ Ceti domain. We computed evolutionary sequences that experience different number of thermal pulses (TP). Results. We find that the occurrence or not of thermal pulses during AGB evolution implies an average deviation in the asteroseimological effective temperature of ZZ Ceti stars of at most 8% and on the order of ≲5% in the stellar mass. For the mass of the hydrogen envelope, however, we find deviations up to 2 orders of magnitude in the case of cool ZZ Ceti stars. Hot and intermediate temperature ZZ Ceti stars show no differences in the hydrogen envelope mass in most cases. Conclusions. Our results show that, in general, the impact of the occurrence or not of thermal pulses in the progenitor stars is not negligible and must be taken into account in asteroseismological studies of ZZ Ceti stars.


2016 ◽  
Vol 822 (2) ◽  
pp. 73 ◽  
Author(s):  
Philip Rosenfield ◽  
Paola Marigo ◽  
Léo Girardi ◽  
Julianne J. Dalcanton ◽  
Alessandro Bressan ◽  
...  

2009 ◽  
Vol 26 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Larry R. Nittler

AbstractPresolar grains in meteorites formed in a sample of Asymptotic Giant Branch (AGB) stars that ended their lives within ≈1 Gyr of the origin of the Solar System 4.6 Gyr ago. The O-isotopic compositions of presolar O-rich stardust reflect the masses and metallicities of their parent stars. We present simple Monte Carlo simulations of the parent AGB stars of presolar grains. Comparison of model predictions with the grain data allow some broad conclusions to be drawn: (1) Presolar O-rich grains formed in AGB stars of mass ∼1.15–2.2 M⊙. The upper-mass cutoff reflects dredge-up of C in more massive AGB stars, leading to C-rich dust rather than O-rich, but the lack of grains from intermediate-mass AGB stars (>4 M⊙) is a major puzzle; (2) The grain O-isotopic data are reproduced well if the Galaxy in presolar times was assumed to have a moderate age-metallicity relationship, but with significant metallicity scatter for stars born at the same time; (3) The Sun appears to have a moderately low metallicity for its age and/or unusual 17O/16O and 18O/16O ratios for its metallicity; and (4) The Solar 17O/18O ratio, while unusual relative to present-day molecular clouds and protostars, was not atypical for the presolar disk and does not require self-pollution of the protosolar molecular cloud by supernova ejecta.


Sign in / Sign up

Export Citation Format

Share Document