scholarly journals Characterising the Protostellar Population of the Magellanic Clouds with VLT/SINFONI

Author(s):  
Jacob Ward ◽  
Joana Oliveira ◽  
Jacco van Loon ◽  
Marta Sewilo

AbstractAt distances of ~50 kpc and ~60 kpc for the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) respectively the Magellanic Clouds present us with a unique opportunity to study star formation in environments outside our own galaxy. Through Spitzer and Herschel photometry and spectroscopy, samples of Young Stellar Objects (YSOs) have been selected and spectroscpically confirmed in the Magellanic Clouds. Here we present some of the key results of our SINFONI K-band observations towards massive YSOs in the Magellanic Clouds. We resolve a number of Spitzer sources into multiple, previously unresolved, components and our analysis of emission lines suggest higher accretion rates and different disc properties compared with massive YSOs in the Milky Way.

1991 ◽  
Vol 148 ◽  
pp. 15-23 ◽  
Author(s):  
B. E. Westerlund

A vast amount of observational data concerning the structure and kinematics of the Magellanic Clouds is now available. Many basic quantities (e.g. distances and geometry) are, however, not yet sufficiently well determined. Interactions between the Small Magellanic Cloud (SMC), the Large Magellanic Cloud (LMC) and our Galaxy have dominated the evolution of the Clouds, causing bursts of star formation which, together with stochastic self-propagating star formation, produced the observed structures. In the youngest generation in the LMC it is seen as an intricate pattern imitating a fragmented spiral structure. In the SMC much of the fragmentation is along the line of sight complicating the reconstruction of its history. The violent events in the past are also recognizable in complex velocity patterns which make the analysis of the kinematics of the Clouds difficult.


1991 ◽  
Vol 148 ◽  
pp. 401-406 ◽  
Author(s):  
Klaas S. De Boer

General aspects of ISM studies using absorption line studies are given and available data are reviewed. Topics are: galactic foreground gas, individual fields in the Magellanic Clouds (MCs) and MC coronae. Overall investigations are discussed. It is demonstrated that the metals in the gas of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) are a factor of 3 and 10, respectively, in abundance below solar levels. The depletion pattern in the LMC is similar to that of the Milky Way.


1999 ◽  
Vol 186 ◽  
pp. 60-60
Author(s):  
A.M. Yoshizawa ◽  
M. Noguchi

The system of the Magellanic Clouds is considered to be dynamically interacting among themselves and with our Galaxy. This interaction is thought to be the cause of many complicated features seen in the Magellanic Clouds and the Magellanic Stream (see Westerlund 1990, A&AR, 2, 27). In order to better understand the formation and evolution of the Magellanic System, we carry out realistic N-body simulations of the tidal distortion of the Small Magellanic Cloud (SMC) due to our Galaxy and the Large Magellanic Cloud (LMC).


Author(s):  
Ryohei Harada ◽  
Toshikazu Onishi ◽  
Kazuki Tokuda ◽  
Sarolta Zahorecz ◽  
Annie Hughes ◽  
...  

Abstract The aim of this study is to characterize the distribution and basic properties of the natal gas associated with high-mass young stellar objects (YSOs) in isolated environments in the Large Magellanic Cloud. High-mass stars usually form in giant molecular clouds (GMCs) as part of a young stellar cluster, but some OB stars are observed far from GMCs. By examining the spatial coincidence between the high-mass YSOs and 12CO (J = 1–0) emission detected by NANTEN and Mopra observations, we selected ten high-mass YSOs that are located away from any of the NANTEN clouds but are detected by the Mopra pointed observations. The ALMA observations revealed that a compact molecular cloud whose mass is a few thousand solar masses or smaller is associated with the high-mass YSOs, which indicates that these compact clouds are the sites of high-mass star formation. The high density and high temperature throughout the clouds are explained by the severe photodissociation of CO due to the lower metallicity than in the Galaxy. The star formation efficiency ranges from several to as high as ∼40%, indicating efficient star formation in these environments. The enhanced turbulence may be a cause of the efficient star formation therein, as judged from the gas velocity information and the association with the lower density gas.


2008 ◽  
Vol 136 (1) ◽  
pp. 18-43 ◽  
Author(s):  
B. A. Whitney ◽  
M. Sewilo ◽  
R. Indebetouw ◽  
T. P. Robitaille ◽  
M. Meixner ◽  
...  

2016 ◽  
Vol 12 (S323) ◽  
pp. 384-385
Author(s):  
Marcin Gładkowski ◽  
Marcin Hajduk ◽  
Igor Soszyński

AbstractThe Optical Gravitational Experiment (OGLE) was effectively used in discovering binary central stars of planetary nebulae (CSPNe). About 50 binary CSPNe have been hitherto identified in the Galaxy, almost half of them were detected in the OGLE database. We used the OGLE data to search for binary CSPNe in the Magellanic Clouds. We also searched for PNe mimics and removed them from the PNe sample. Here, we present results of the photometric analysis for Small Magellanic Cloud (SMC) and our progress on search of binary central stars in the Large Magellanic Cloud (LMC). So far, we have discovered one binary central star of the PN beyond the Milky Way, which is located in the Small Magellanic Cloud.


2018 ◽  
Vol 615 ◽  
pp. A121 ◽  
Author(s):  
M. Rubio ◽  
R. H. Barbá ◽  
V. M. Kalari

We present HK spectra of three sources located in the N 66 region of the Small Magellanic Cloud. The sources display prominent stellar Brγ and extended H2 emission, and exhibit infrared excesses at λ > 2 μm. Based on their spectral features, and photometric spectral energy distributions, we suggest that these sources are massive young stellar objects. The findings are interpreted as evidence of on-going high mass star formation in N 66.


2008 ◽  
Vol 4 (S256) ◽  
pp. 227-232
Author(s):  
J. A. Green ◽  
J. L. Caswell ◽  
G. A. Fuller ◽  
A. Avison ◽  
S. L. Breen ◽  
...  

AbstractThe results of the first complete survey for 6668-MHz CH3OH and 6035-MHz excited-state OH masers in the Small and Large Magellanic Clouds are presented. A new 6668-MHz CH3OH maser in the Large Magellanic Cloud has been detected towards the star-forming region N 160a, together with a new 6035-MHz excited-state OH maser detected towards N 157a. We also re-observed the previously known 6668-MHz CH3OH masers and the single known 6035-MHz OH maser. Neither maser transition was detected above ~0.13 Jy in the Small Magellanic Cloud. All observations were initially made using the CH3OH Multibeam (MMB) survey receiver on the 64-m Parkes radio telescope as part of the overall MMB project. Accurate positions were measured with the Australia Telescope Compact Array (ATCA). In a comparison of the star formation maser populations in the Magellanic Clouds and our Galaxy, the LMC maser populations are demonstrated to be smaller than their Milky Way counterparts. CH3OH masers are under-abundant by a factor of ~50, whilst OH and H2O masers are a factor of ~10 less abundant than our Galaxy.


Sign in / Sign up

Export Citation Format

Share Document