scholarly journals Massive young stellar objects in the N 66/NGC 346 region of the SMC

2018 ◽  
Vol 615 ◽  
pp. A121 ◽  
Author(s):  
M. Rubio ◽  
R. H. Barbá ◽  
V. M. Kalari

We present HK spectra of three sources located in the N 66 region of the Small Magellanic Cloud. The sources display prominent stellar Brγ and extended H2 emission, and exhibit infrared excesses at λ > 2 μm. Based on their spectral features, and photometric spectral energy distributions, we suggest that these sources are massive young stellar objects. The findings are interpreted as evidence of on-going high mass star formation in N 66.

Author(s):  
Ryohei Harada ◽  
Toshikazu Onishi ◽  
Kazuki Tokuda ◽  
Sarolta Zahorecz ◽  
Annie Hughes ◽  
...  

Abstract The aim of this study is to characterize the distribution and basic properties of the natal gas associated with high-mass young stellar objects (YSOs) in isolated environments in the Large Magellanic Cloud. High-mass stars usually form in giant molecular clouds (GMCs) as part of a young stellar cluster, but some OB stars are observed far from GMCs. By examining the spatial coincidence between the high-mass YSOs and 12CO (J = 1–0) emission detected by NANTEN and Mopra observations, we selected ten high-mass YSOs that are located away from any of the NANTEN clouds but are detected by the Mopra pointed observations. The ALMA observations revealed that a compact molecular cloud whose mass is a few thousand solar masses or smaller is associated with the high-mass YSOs, which indicates that these compact clouds are the sites of high-mass star formation. The high density and high temperature throughout the clouds are explained by the severe photodissociation of CO due to the lower metallicity than in the Galaxy. The star formation efficiency ranges from several to as high as ∼40%, indicating efficient star formation in these environments. The enhanced turbulence may be a cause of the efficient star formation therein, as judged from the gas velocity information and the association with the lower density gas.


2020 ◽  
Vol 644 ◽  
pp. A82
Author(s):  
O. Miettinen

Context. Infrared dark clouds (IRDCs) can be the birth sites of high-mass stars, and hence determining the physical properties of dense cores in IRDCs is useful to constrain the initial conditions and theoretical models of high-mass star formation. Aims. We aim to determine the physical properties of dense cores in the filamentary Seahorse IRDC G304.74+01.32. Methods. We used data from the Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), and Herschel in conjuction with our previous 350 and 870 μm observations with the Submillimetre APEX Bolometer Camera (SABOCA) and Large APEX BOlometer CAmera, and constructed the far-IR to submillimetre spectral energy distributions (SEDs) of the cores. The SEDs were fitted using single or two-temperature modified blackbody emission curves to derive the dust temperatures, masses, and luminosities of the cores. Results. For the 12 analysed cores, which include two IR dark cores (no WISE counterpart), nine IR bright cores, and one H II region, the mean dust temperature of the cold (warm) component, the mass, luminosity, H2 number density, and surface density were derived to be 13.3 ± 1.4 K (47.0 ± 5.0 K), 113 ± 29 M⊙, 192 ± 94 L⊙, (4.3 ± 1.2) × 105 cm−3, and 0.77 ± 0.19 g cm−3, respectively. The H II region IRAS 13039-6108a was found to be the most luminous source in our sample ((1.1 ± 0.4) × 103 L⊙). All the cores were found to be gravitationally bound (i.e. the virial parameter αvir < 2). Two out of the nine analysed IR bright cores (22%) were found to follow an accretion luminosity track under the assumptions that the mass accretion rate is 10−5 M⊙ yr−1, the stellar mass is 10% of the parent core mass, and the radius of the central star is 5 R⊙. Most of the remaing ten cores were found to lie within 1 dex below this accretion luminosity track. Seven out of 12 of the analysed cores (58%) were found to lie above the mass-radius thresholds of high-mass star formation proposed in the literature. The surface densities of Σ > 0.4 g cm−3 derived for these seven cores also exceed the corresponding threshold for high-mass star formation. Five of the analysed cores (42%) show evidence of fragmentation into two components in the SABOCA 350 μm image. Conclusions. In addition to the H II region source IRAS 13039-6108a, some of the other cores in Seahorse also appear to be capable of giving birth to high-mass stars. The 22 μm dark core SMM 9 is likely to be the youngest source in our sample that has the potential to form a high-mass star (96 ± 23 M⊙ within a radius of ~0.1 pc). The dense core population in the Seahorse IRDC has comparable average properties to the cores in the well-studied Snake IRDC G11.11-0.12 (e.g. Tdust and L agree within a factor of ~1.8); furthermore, the Seahorse, which lies ~60 pc above the Galactic plane, appears to be a smaller (e.g. three times shorter in projection, ~100 times less massive) version of the Snake. The Seahorse core fragmentation mechanisms appear to be heterogenous, including cases of both thermal and non-thermal Jeans instability. High-resolution follow-up studies are required to address the fragmented cores’ genuine potential of forming high-mass stars.


Author(s):  
Jacob Ward ◽  
Joana Oliveira ◽  
Jacco van Loon ◽  
Marta Sewilo

AbstractAt distances of ~50 kpc and ~60 kpc for the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) respectively the Magellanic Clouds present us with a unique opportunity to study star formation in environments outside our own galaxy. Through Spitzer and Herschel photometry and spectroscopy, samples of Young Stellar Objects (YSOs) have been selected and spectroscpically confirmed in the Magellanic Clouds. Here we present some of the key results of our SINFONI K-band observations towards massive YSOs in the Magellanic Clouds. We resolve a number of Spitzer sources into multiple, previously unresolved, components and our analysis of emission lines suggest higher accretion rates and different disc properties compared with massive YSOs in the Milky Way.


2012 ◽  
Vol 8 (S292) ◽  
pp. 112-112
Author(s):  
M. Sewiło ◽  
L. R. Carlson ◽  
J. P. Seale ◽  
R. Indebetouw ◽  
M. Meixner ◽  
...  

AbstractThe Spitzer Legacy Program “Surveying the Agents of Galaxy Evolution in the Tidally-Stripped, Low-Metallicity Small Magellanic Cloud” (SAGE-SMC; Gordon et al. 2011) allows a global study of star formation in the SMC at high enough resolution to resolve individual cores and protostars at a range of mid-IR wavelengths. Using the SAGE-SMC IRAC (3.6 - 8.0 μm) and MIPS (24 and 70 μm) catalogs and images combined with the near-IR and optical data, we identified a population of ∼1100 intermediate- to high-mass Young Stellar Objects (YSOs) in the SMC (3 × more than previously known). We investigate the properties of the YSOs and how they relate to the galaxy's structure and gas and dust distribution.


2019 ◽  
Vol 492 (1) ◽  
pp. 1335-1347
Author(s):  
Sonu Tabitha Paulson ◽  
Jagadheep D Pandian

ABSTRACT Methanol masers at 6.7 GHz are the brightest of class II methanol masers and have been found exclusively towards massive star-forming regions. These masers can thus be used as a unique tool to probe the early phases of massive star formation. We present here a study of the spectral energy distributions of 320 6.7 GHz methanol masers chosen from the Methanol Multibeam catalogue, which fall in the Hi-GAL range (|l| ≤ 60°, |b| ≤ 1°). The spectral energy distributions are constructed from 870 to 70 µm using data from the ATLASGAL and Hi-GAL surveys. The emission from cold dust is modelled by a single grey body component fit. We estimate the clump properties such as mass, far-infrared luminosity, and column density using the best-fitting parameters of the SED fits. Considering the Kauffman criteria for massive star formation, we find that all but a few maser hosts have the potential to harbour at least one high-mass star. The physical properties of the methanol maser hosts are also discussed. The evolutionary stages of 6.7 GHz maser sources, explored using the mass luminosity diagram, suggest that they are predominantly associated with high-mass stars with the majority being in the accretion phase. However, we observe a small number of sources that could possibly be related to intermediate- or low-mass stars.


2019 ◽  
Vol 489 (3) ◽  
pp. 3200-3217
Author(s):  
Cameron P M Bell ◽  
Maria-Rosa L Cioni ◽  
A H Wright ◽  
Stefano Rubele ◽  
David L Nidever ◽  
...  

ABSTRACT We present a method to map the total intrinsic reddening of a foreground extinguishing medium via the analysis of spectral energy distributions (SEDs) of background galaxies. In this pilot study, we implement this technique in two distinct regions of the Small Magellanic Cloud (SMC) – the bar and the southern outskirts – using a combination of optical and near-infrared ugrizYJKs broad-band imaging. We adopt the lephare χ2-minimization SED-fitting routine and various samples of galaxies and/or quasi-stellar objects to investigate the intrinsic reddening. We find that only when we construct reddening maps using objects classified as galaxies with low levels of intrinsic reddening (i.e. ellipticals/lenticulars and early-type spirals), the resultant maps are consistent with previous literature determinations, i.e. the intrinsic reddening of the SMC bar is higher than that in the outer environs. We employ two sets of galaxy templates – one theoretical and one empirical – to test for template dependences in the resulting reddening maps and find that the theoretical templates imply systematically higher reddening values by up to 0.20 mag in E(B − V). A comparison with previous reddening maps, based on the stellar components of the SMC, typically shows reasonable agreement. There is, however, significant variation amongst the literature reddening maps as to the level of intrinsic reddening associated with the bar. Thus, it is difficult to unambiguously state that instances of significant discrepancies are the result of appreciable levels of dust not accounted for in some literature reddening maps or whether they reflect issues with our adopted methodology.


2009 ◽  
Vol 5 (H15) ◽  
pp. 798-798
Author(s):  
Stan Kurtz

AbstractHigh-mass star formation is manifestly a phenomenon of the Galactic Plane. The process begins with pre-stellar cores, evolves to proto-stellar objects, and culminates in massive main-sequence stars. Because massive young stellar objects are deeply embedded, the radio, sub-mm, and far/mid-infrared spectral windows are the most revealing. Galactic plane surveys at these wavelengths trace hot and cold molecular gas, interstellar masers, warm dust, and ionized gas that are present during star formation.


2007 ◽  
Vol 3 (S242) ◽  
pp. 130-134 ◽  
Author(s):  
L. D. Matthews ◽  
C. Goddi ◽  
L. J. Greenhill ◽  
C. J. Chandler ◽  
M. J. Reid ◽  
...  

AbstractA comprehensive picture of high-mass star formation has remained elusive, in part because examples of high-mass young stellar objects (YSOs) tend to be relatively distant, deeply embedded, and confused with other emission sources. These factors have impeded dynamical investigations within tens of AU of high-mass YSOs—scales that are critical for probing the interfaces where outflows from accretion disks are launched and collimated. Using observations of SiO masers obtained with the Very Large Array (VLA) and the Very Long Baseline Array (VLBA), the KaLYPSO project is overcoming these limitations by mapping the structure and dynamical/temporal evolution of the material 10-1000 AU from the nearest high-mass YSO: Radio Source I in the Orion BN/KL region. Our data include ~40 epochs of VLBA observations over a several-year period, allowing us to track the proper motions of individual SiO maser spots and to monitor changes in the physical conditions of the emitting material with time. Ultimately these data will provide 3-D maps of the outflow structure over approximately 30% of the outflow crossing time. Here we summarize recent results from the KaLYPSO project, including evidence that high-mass star formation occurs via disk-mediated accretion.


2020 ◽  
Vol 500 (4) ◽  
pp. 4448-4468
Author(s):  
D M-A Meyer ◽  
E I Vorobyov ◽  
V G Elbakyan ◽  
J Eislöffel ◽  
A M Sobolev ◽  
...  

ABSTRACT It is now a widely held view that, in their formation and early evolution, stars build up mass in bursts. The burst mode of star formation scenario proposes that the stars grow in mass via episodic accretion of fragments migrating from their gravitationally unstable circumstellar discs, and it naturally explains the existence of observed pre-main-sequence bursts from high-mass protostars. We present a parameter study of hydrodynamical models of massive young stellar objects (MYSOs) that explores the initial masses of the collapsing clouds (Mc = 60–$200\, \rm M_{\odot }$) and ratio of rotational-to-gravitational energies (β = 0.005–0.33). An increase in Mc and/or β produces protostellar accretion discs that are more prone to develop gravitational instability and to experience bursts. We find that all MYSOs have bursts even if their pre-stellar core is such that β ≤ 0.01. Within our assumptions, the lack of stable discs is therefore a major difference between low- and high-mass star formation mechanisms. All our disc masses and disc-to-star mass ratios Md/M⋆ &gt; 1 scale as a power law with the stellar mass. Our results confirm that massive protostars accrete about $40\, -\, 60{{\ \rm per\ cent}}$ of their mass in the burst mode. The distribution of time periods between two consecutive bursts is bimodal: there is a short duration ($\sim 1\, -\, 10~\rm yr$) peak corresponding to the short, faintest bursts and a long-duration peak (at $\sim 10^{3}\, -\, 10^{4} \rm yr$) corresponding to the long, FU-Orionis-type bursts appearing in later disc evolution, i.e. around $30\, \rm kyr$ after disc formation. We discuss this bimodality in the context of the structure of massive protostellar jets as potential signatures of accretion burst history.


Sign in / Sign up

Export Citation Format

Share Document