Unveiling the mid-plane temperature and mass distribution in the giant-planet formation zone

2017 ◽  
Vol 13 (S332) ◽  
pp. 103-108
Author(s):  
Ke Zhang ◽  
Edwin A. Bergin ◽  
Geoffrey A. Blake ◽  
L. Ilsedore Cleeves ◽  
Kamber R. Schwarz

AbstractCore-accretion theory predicts that the formation of giant planets predominantly occurs at the dense mid-plane of the inner ∼50 AU of protoplanetary disks. However, due to observational limitation, this critical region remains to be the least charted area in protoplanetary disks. With its great sensitivity, ALMA recently started to image optically thin line emissions arisen from the mid-plane of the inner 50AU in nearby disks, which unlocks an exciting new path to directly constrain the physical properties of the giant planet formation zone through gas tracers. Here we present the first spatially resolved observations of the 13C18O J=3-2 line emission in the TW Hya disk. We show that this emission is optically thin even inside the CO mid-plane snowline. Combining it with the C18O J=3-2 images and the previously detected HD J=1-0 flux, we directly constrain the mid-plane temperature and optical depths of the CO gas and dust. We report a mid-plane CO snowline at 20.5 ± 1.3 AU, a mid-plane temperature distribution of 27+4−3×(R/20.5AU)-0.47+0.06−0.07 K, and a gas mass distribution of 13+8−5×(R/20.5AU)-0.9+0.4−0.3 g cm−2 between 5-20.5 AU in the TW Hya protoplanetary disk. We find a total gas/mm-sized dust mass ratio of 140 ± 40 in this region, suggesting that ∼2.4 earth mass of dust aggregates have grown to > cm sizes (and perhaps much larger).

2019 ◽  
Vol 626 ◽  
pp. A11 ◽  
Author(s):  
P. Cazzoletti ◽  
C. F. Manara ◽  
H. Baobab Liu ◽  
E. F. van Dishoeck ◽  
S. Facchini ◽  
...  

Context. In recent years, the disk populations in a number of young star-forming regions have been surveyed with the Atacama Large Millimeter/submillimeter Array (ALMA). Understanding the disk properties and their correlation with the properties of the central star is critical to understanding planet formation. In particular, a decrease of the average measured disk dust mass with the age of the region has been observed, consistent with grain growth and disk dissipation. Aims. We aim to compare the general properties of disks and their host stars in the nearby (d = 160 pc) Corona Australis (CrA) star forming region to those of the disks and stars in other regions. Methods. We conducted high-sensitivity continuum ALMA observations of 43 Class II young stellar objects in CrA at 1.3 mm (230 GHz). The typical spatial resolution is ~0.3′′. The continuum fluxes are used to estimate the dust masses of the disks, and a survival analysis is performed to estimate the average dust mass. We also obtained new VLT/X-shooter spectra for 12 of the objects in our sample for which spectral type (SpT) information was missing. Results. Twenty-four disks were detected, and stringent limits have been put on the average dust mass of the nondetections. Taking into account the upper limits, the average disk mass in CrA is 6 ± 3 M⊕. This value is significantly lower than that of disks in other young (1–3 Myr) star forming regions (Lupus, Taurus, Chamaeleon I, and Ophiuchus) and appears to be consistent with the average disk mass of the 5–10 Myr-old Upper Sco. The position of the stars in our sample on the Herzsprung-Russel diagram however seems to confirm that CrA has an age similar to Lupus. Neither external photoevaporation nor a lower-than-usual stellar mass distribution can explain the low disk masses. On the other hand, a low-mass disk population could be explained if the disks were small, which could happen if the parent cloud had a low temperature or intrinsic angular momentum, or if the angular momentum of the cloud were removed by some physical mechanism such as magnetic braking. Even in detected disks, none show clear substructures or cavities. Conclusions. Our results suggest that in order to fully explain and understand the dust mass distribution of protoplanetary disks and their evolution, it may also be necessary to take into consideration the initial conditions of star- and disk-formation process. These conditions at the very beginning may potentially vary from region to region, and could play a crucial role in planet formation and evolution.


2020 ◽  
Author(s):  
Linda Podio ◽  
Antonio Garufi ◽  
Claudio Codella ◽  
Davide Fedele ◽  
Kazi Rygl ◽  
...  

<p>How have planets formed in the Solar System? And what chemical composition they inherited from their natal environment? Is the chemical composition passed unaltered from the earliest stages of the formation of the Sun to its disk and then to the planets which assembled in the disk? Or does it reflects chemical processes occurring in the disk and/or during the planet formation process? And what was the role of comets in the delivery of volatiles and prebiotic compounds to early Earth?</p> <p>A viable way to answer these questions is to observe protoplanetary disks around young Sun-like stars and compare their chemical composition with that of the early Solar System, which is imprinted in comets. The impacting images recently obtained by millimetre arrays of antennas such as ALMA provided the first observational evidence of ongoing planet formation in 0.1-1 million years old disks, through rings and gaps in their dust and gas distribution. The chemical composition of the forming planets and small bodies clearly depends on the location and timescale for their formation and is intimately connected to the spatial distribution and abundance of the various molecular species in the disk. The chemical characterisation of disks is therefore crucial.</p> <p>This field, however, is still in its infancy, because of the small sizes of disks (~100 au) and to the low gas-phase abundance of molecules (abundances with respect to H<sub>2</sub> down to 10<sup>-12</sup>), which requires an unprecedented combination of angular resolution and sensitivity. I will show the first pioneering results obtained as part of the ALMA chemical survey of protoplanetary disks in the Taurus star forming region (ALMA-DOT program). Thanks to the ALMA images at ~20 au resolution, we recovered the radial distribution and abundance of diatomic molecules (CO and CN), S-bearing molecules (CS, SO, SO<sub>2</sub>, H<sub>2</sub>CS), as well as simple organics (H<sub>2</sub>CO and CH<sub>3</sub>OH) which are key for the formation of prebiotic compounds. Enhanced H<sub>2</sub>CO emission in the cold outer disk, outside the CO snowline, suggests that organic molecules may be efficiently formed in disks on the icy mantles of dust grain. This could be the dawn of ice chemistry in the disk, producing ices rich of complex organic molecules (COMs) which could be incorporated by the bodies forming in the outer disk region, such as comets.<span class="Apple-converted-space"> </span></p> <p>The next step is the comparison of the molecules radial distribution and abundance in disks with the chemical composition of comets, which are the leftover building blocks of giant planet cores and other planetary bodies. The first pioneering results in this direction have been obtained thanks to the ESA’s <em>Rosetta </em>mission, which allowed obtaining in situ measurements of the COMs abundance on the comet 67P/Churyumov-Gerasimenko. The comparison with three protostellar solar analogs observed on Solar System scales has shown comparable COMs abundance, implying that the volatile composition of comets and planetesimals may be partially inherited from the protostellar stage. The advent of new mission, devoted to sample return such as AMBITION will allow us to do a step ahead in this direction.</p> <p> </p>


2004 ◽  
Vol 609 (2) ◽  
pp. 1045-1064 ◽  
Author(s):  
Lucio Mayer ◽  
Thomas Quinn ◽  
James Wadsley ◽  
Joachim Stadel

2010 ◽  
Vol 6 (S276) ◽  
pp. 50-53 ◽  
Author(s):  
Zsolt Regály ◽  
Laszlo Kiss ◽  
Zsolt Sándor ◽  
Cornelis P. Dullemond

AbstractTheories of planet formation predict the birth of giant planets in the inner, dense, and gas-rich regions of the circumstellar disks around young stars. These are the regions from which strong CO emission is expected. Observations have so far been unable to confirm the presence of planets caught in formation. We have developed a novel method to detect a giant planet still embedded in a circumstellar disk by the distortions of the CO molecular line profiles emerging from the protoplanetary disk's surface. The method is based on the fact that a giant planet significantly perturbs the gas velocity flow in addition to distorting the disk surface density. We have calculated the emerging molecular line profiles by combining hydrodynamical models with semianalytic radiative transfer calculations. Our results have shown that a giant Jupiter-like planet can be detected using contemporary or future high-resolution near-IR spectrographs such as VLT/CRIRES or ELT/METIS. We have also studied the effects of binarity on disk perturbations. The most interesting results have been found for eccentric circumprimary disks in mid-separation binaries, for which the disk eccentricity - detectable from the asymmetric line profiles - arises from the gravitational effects of the companion star. Our detailed simulations shed new light on how to constrain the disk kinematical state as well as its eccentricity profile. Recent findings by independent groups have shown that core-accretion is severely affected by disk eccentricity, hence detection of an eccentric protoplanetary disk in a young binary system would further constrain planet formation theories.


Author(s):  
Sergei Nayakshin ◽  
Takashi Tsukagoshi ◽  
Cassandra Hall ◽  
Allona Vazan ◽  
Ravit Helled ◽  
...  

Abstract Dark rings with bright rims are the indirect signposts of planets embedded in protoplanetary discs. In a recent first, an azimuthally elongated AU-scale blob, possibly a planet, was resolved with ALMA in TW Hya. The blob is at the edge of a cliff-like rollover in the dust disc rather than inside a dark ring. Here we build time-dependent models of TW Hya disc. We find that the classical paradigm cannot account for the morphology of the disc and the blob. We propose that ALMA-discovered blob hides a Neptune mass planet losing gas and dust. We show that radial drift of mm-sized dust particles naturally explains why the blob is located on the edge of the dust disc. Dust particles leaving the planet perform a characteristic U-turn relative to it, producing an azimuthally elongated blob-like emission feature. This scenario also explains why a 10 Myr old disc is so bright in dust continuum. Two scenarios for the dust-losing planet are presented. In the first, a dusty pre-runaway gas envelope of a ∼40 M⊕ Core Accretion planet is disrupted, e.g., as a result of a catastrophic encounter. In the second, a massive dusty pre-collapse gas giant planet formed by Gravitational Instability is disrupted by the energy released in its massive core. Future modelling may discriminate between these scenarios and allow us to study planet formation in an entirely new way – by analysing the flows of dust and gas recently belonging to planets, informing us about the structure of pre-disruption planetary envelopes.


2017 ◽  
Vol 1 (6) ◽  
Author(s):  
Ke Zhang ◽  
Edwin A. Bergin ◽  
Geoffrey A. Blake ◽  
L. Ilsedore Cleeves ◽  
Kamber R. Schwarz

Sign in / Sign up

Export Citation Format

Share Document