Outlying Hα blobs in SDSS IV MaNGA

2018 ◽  
Vol 14 (S344) ◽  
pp. 265-266
Author(s):  
Omkar Bait ◽  
Yogesh Wadadekar ◽  
Sudhanshu Barway

AbstractWe have discovered a population of 29 outlying Hα emitters which appear like unresolved blobs in the DR14 data release of the SDSS IV MaNGA integral field unit survey. They do not have any underlying optical continuum emission in deep imaging from the DECam Legacy Survey or Beijing-Arizona Sky Survey. These blobs either lie away from the disc of the host galaxy in the MaNGA IFU and/or have velocities which are different from the velocity map of the host galaxy. Interestingly, all of them show photoionisation due to star formation. These galaxies have very high specific star formation rates compared to the known population of dwarf galaxies. However, their metallicities are consistent with or even lowerthan those of the local volume dwarfs. Thus, we can possibly rule out tidal dwarf galaxies. They could represent a new population of low mass and starbursting dwarf galaxies.

2020 ◽  
Vol 493 (4) ◽  
pp. 5625-5635
Author(s):  
Cody M Rude ◽  
Madina R Sultanova ◽  
Gihan L Ipita Kaduwa Gamage ◽  
Wayne A Barkhouse ◽  
Sandanuwan P Kalawila Vithanage

ABSTRACT Evolution of galaxies in dense environments can be affected by close encounters with neighbouring galaxies and interactions with the intracluster medium. Dwarf galaxies (dGs) are important as their low mass makes them more susceptible to these effects than giant systems. Combined luminosity functions (LFs) in the r and u band of 15 galaxy clusters were constructed using archival data from the Canada–France–Hawaii Telescope. LFs were measured as a function of clustercentric radius from stacked cluster data. Marginal evidence was found for an increase in the faint-end slope of the u-band LF relative to the r-band with increasing clustercentric radius. The dwarf-to-giant ratio (DGR) was found to increase toward the cluster outskirts, with the u-band DGR increasing faster with clustercentric radius compared to the r-band. The dG blue fraction was found to be ∼2 times larger than the giant galaxy blue fraction over all clustercentric distance (∼5σ level). The central concentration (C) was used as a proxy to distinguish nucleated versus non-nucleated dGs. The ratio of high-C to low-C dGs was found to be ∼2 times greater in the inner cluster region compared to the outskirts (2.8σ level). The faint-end slope of the r-band LF for the cluster outskirts (0.6 ≤ r/r200 < 1.0) is steeper than the Sloan Digital Sky Survey field LF, while the u-band LF is marginally steeper at the 2.5σ level. Decrease in the faint-end slope of the r- and u-band cluster LFs towards the cluster centre is consistent with quenching of star formation via ram pressure stripping and galaxy–galaxy interactions.


2006 ◽  
Vol 2 (S235) ◽  
pp. 327-327
Author(s):  
P. Papaderos

The star-formation history and chemodynamical evolution of Blue Compact Dwarf (BCD) galaxies are central issues in dwarf galaxy research. In spite of being old in their vast majority, BCDs resemble in many aspects unevolved low-mass galaxies in the early universe. They are gas-rich (Hi mass fraction of typically > 30%) and metal-deficient (7.1 $\la$ 12+log(O/H) $\la$ 8.3) extragalactic systems, undergoing intense star-forming (SF) activity within an underlying low-surface brightness (LSB) host galaxy.


2018 ◽  
Vol 865 (2) ◽  
pp. L22 ◽  
Author(s):  
Andrew Emerick ◽  
Greg L. Bryan ◽  
Mordecai-Mark Mac Low

2019 ◽  
Vol 485 (3) ◽  
pp. 3169-3184 ◽  
Author(s):  
Vaishali Parkash ◽  
Michael J I Brown ◽  
T H Jarrett ◽  
A Fraser-McKelvie ◽  
M E Cluver

Abstract We present a sample of 91 H i galaxies with little or no star formation, and discuss the analysis of the integral field unit (IFU) spectra of 28 of these galaxies. We identified H i galaxies from the H i Parkes All-Sky Survey Catalog (HICAT) with Wide-field Infrared Survey Explorer (WISE) colours consistent with low specific star formation (<10−10.4 yr−1), and obtained optical IFU spectra with the Wide-Field Spectrograph (WiFeS). Visual inspection of the PanSTARRS, Dark Energy Survey, and Carnegie-Irvine imaging of 62 galaxies reveals that at least 32 galaxies in the sample have low levels of star formation, primarily in arms/rings. New IFU spectra of 28 of these galaxies reveals 3 galaxies with central star formation, 1 galaxy with low-ionization nuclear emission-line regions (LINERs), 20 with extended low-ionization emission-line regions (LIERs), and 4 with high excitation Seyfert (Sy) emission. From the spectroscopic analysis of H i selected galaxies with little star formation, we conclude that 75 per cent of this population are LINERs/LIERs.


1995 ◽  
Vol 151 ◽  
pp. 216-217
Author(s):  
R. Neuhäuser ◽  
Th. Preibisch

AbstractWe study the X-ray emission of several hundred (young, low-mass, late-type, pre-main sequence) T Tauri stars (TTS) in the Taurus T association, a nearby well-studied region of ongoing star formation. We report on X-ray emission variability of TTS as observed with the flux-limited ROSAT All-Sky Survey (RASS). Since RASS observations are spatially unbiased, we can investigate the X-ray flare rate of TTS on a large sample. We find that large flares are very rare (once per year), while medium-size flares can occur once in ∼ 40 days.


2019 ◽  
Vol 490 (3) ◽  
pp. 4447-4463 ◽  
Author(s):  
Coral Wheeler ◽  
Philip F Hopkins ◽  
Andrew B Pace ◽  
Shea Garrison-Kimmel ◽  
Michael Boylan-Kolchin ◽  
...  

ABSTRACT We study a suite of extremely high-resolution cosmological Feedback in Realistic Environments simulations of dwarf galaxies ($M_{\rm halo} \lesssim 10^{10}\rm \, M_{\odot }$), run to z = 0 with $30\, \mathrm{M}_{\odot }$ resolution, sufficient (for the first time) to resolve the internal structure of individual supernovae remnants within the cooling radius. Every halo with $M_{\rm halo} \gtrsim 10^{8.6}\, \mathrm{M}_{\odot }$ is populated by a resolved stellar galaxy, suggesting very low-mass dwarfs may be ubiquitous in the field. Our ultra-faint dwarfs (UFDs; $M_{\ast }\lt 10^{5}\, \mathrm{M}_{\odot }$) have their star formation (SF) truncated early (z ≳ 2), likely by reionization, while classical dwarfs ($M_{\ast }\gt 10^{5}\, \mathrm{M}_{\odot }$) continue forming stars to z < 0.5. The systems have bursty star formation histories, forming most of their stars in periods of elevated SF strongly clustered in both space and time. This allows our dwarf with M*/Mhalo > 10−4 to form a dark matter core ${\gt}200\rm \, pc$, while lower mass UFDs exhibit cusps down to ${\lesssim}100\rm \, pc$, as expected from energetic arguments. Our dwarfs with $M_{\ast }\gt 10^{4}\, \mathrm{M}_{\odot }$ have half-mass radii (R1/2) in agreement with Local Group (LG) dwarfs (dynamical mass versus R1/2 and stellar rotation also resemble observations). The lowest mass UFDs are below surface brightness limits of current surveys but are potentially visible in next-generation surveys (e.g. LSST). The stellar metallicities are lower than in LG dwarfs; this may reflect pre-enrichment of the LG by the massive hosts or Pop-III stars. Consistency with lower resolution studies implies that our simulations are numerically robust (for a given physical model).


2018 ◽  
Vol 14 (S344) ◽  
pp. 29-37
Author(s):  
Andrew A. Cole

AbstractLocal Group dwarf galaxies are a unique astrophysical laboratory because they are the only objects in which we can reliably and precisely characterize the star formation histories of low-mass galaxies going back to the epoch of reionization. There are of order 100 known galaxies less massive than the Small Magellanic Cloud within ~1 Megaparsec of the Milky Way, with a vide variety of star formation history, gas content, and mass to light ratios. In this overview the current understanding of the formation and evolution of low-mass galaxies across cosmic time will be presented, and the possibility of drawing links between the properties of individual systems and the broader Local Group and cosmological context will be discussed. Local Group dwarfs will remain a uniquely powerful testbed to constrain the properties of dark matter and to evaluate the performance of simulations for the foreseeable future.


2003 ◽  
Vol 145 (1) ◽  
pp. 111-145 ◽  
Author(s):  
Chadwick H. Young ◽  
Yancy L. Shirley ◽  
Neal J. Evans II ◽  
Jonathan M. C. Rawlings

2020 ◽  
Vol 640 ◽  
pp. A106 ◽  
Author(s):  
Oliver Müller ◽  
Francine R. Marleau ◽  
Pierre-Alain Duc ◽  
Rebecca Habas ◽  
Jérémy Fensch ◽  
...  

The MATLAS deep imaging survey has uncovered a plethora of dwarf galaxies in the low density environment it has mapped. A fraction of them are unusually extended and have low surface brightness. Among these so-called ultra-diffuse galaxies, a few seem to host an excess of globular clusters (GCs). With the integral field unit spectrograph MUSE we have observed one of these galaxies – MATLAS J15052031+0148447 (MATLAS-2019) – located toward the nearby group NGC 5846 and measured its systemic velocity, age, and metallicity, and that of its GC candidates. For the stellar body of MATLAS-2019 we derive a metallicity of −1.33−0.01+0.19 dex and an age of 11.2−0.8+1.8 Gyr. For some of the individual GCs and the stacked GC population, we derive consistent ages and metallicities. From the 11 confirmed GCs and using a Markov Chain Monte Carlo approach we derived a dynamical mass-to-light ratio of 4.2−3.4+8.6 M⊙/L⊙. This is at the lower end of the luminosity-mass scaling relation defined by the Local Group dwarf galaxies. Furthermore, we could not confirm or reject the possibility of a rotational component in the GC system. If present, this would further modify the inferred mass. Follow-up observations of the GC population and of the stellar body of the galaxy are needed to assess whether this galaxy lacks dark matter, as was suggested for the pair of dwarf galaxies in the field of NGC 1052, or if this is a misinterpretation arising from systematic uncertainties of the method commonly used for these systems and the large uncertainties of the individual GC velocities.


2018 ◽  
Vol 14 (S344) ◽  
pp. 429-436
Author(s):  
Hakim Atek

AbstractDwarf galaxies represent the dominant population at high redshift and they most likely contributed in great part to star formation history of the Universe and cosmic reionization. The importance of dwarf galaxies at high redshift has been mostly recognized in the last decade due to large progress in observing facilities allowing deep galaxy surveys to identify low-mass galaxies. This population appear to have extreme emission lines and ionizing properties that challenge stellar population models. Star formation follows a stochastic process in these galaxies, which has important implication on the ionizing photon production and its escape fraction whose measurements are challenging for both simulations and observations. Outstanding questions include: what are the physical properties at the origin of such extreme properties? What are the smallest dark matter halos that host star formation? Are dwarf galaxies responsible for cosmic reionization?


Sign in / Sign up

Export Citation Format

Share Document