The contribution of Globular Clusters to the stellar halo using APOGEE and GAIA

2019 ◽  
Vol 14 (S351) ◽  
pp. 455-459
Author(s):  
Danny Horta ◽  
J. Ted Mackereth ◽  
Ricardo P. Schiavon ◽  

AbstractOver the last decade, much of the key questions in Galactic Archaeology have been asnwered by studying the Milky Way’s globular cluster (GC) system. Following on this, it has been shown that a substantial fraction of the Milky Way’s stellar halo field arises from GC dissolution. In this work, we make use of the latest data release fromn the APOGEE survey to study GC dissolution ratios in different spatial regions of the Galaxy. Our results will allow us to constrain many astrophysical questions, such as: the origin of N-Rich stars, the mass contribution from GCs to the stellar halo of the Galaxy, the origin of the Galactic GC system and the mass assembly of the Milky Way.

1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


1983 ◽  
Vol 100 ◽  
pp. 359-364
Author(s):  
K. C. Freeman

In the Milky Way, the globular clusters are all very old, and we are accustomed to think of them as the oldest objects in the Galaxy. The clusters cover a wide range of chemical abundance, from near solar down to about [Fe/H] ⋍ −2.3. However there are field stars with abundances significantly lower than −2.3 (eg Bond, 1980); this implies that the clusters formed during the active phase of chemical enrichment, with cluster formation beginning at a time when the enrichment processes were already well under way.


2017 ◽  
Vol 26 (09) ◽  
pp. 1730017
Author(s):  
Marco Merafina

We analyze structural parameters of the globular clusters belonging to the Milky Way system which were listed in the latest edition of the Harris Catalogue. We search for observational evidences of the effect of tidal forces induced by the Galaxy on the dynamical and thermodynamical evolution of a globular cluster. The behavior for the [Formula: see text] distribution exhibited by the globular cluster population seems to be in contrast with theoretical results in literature about gravothermal instability, and suggest a new limit value smaller than the previous one.


2019 ◽  
Vol 14 (S351) ◽  
pp. 420-421
Author(s):  
Julio A. Carballo-Bello

AbstractIn recent years, we have gathered enough evidence showing that most of the Galactic globular clusters extend well beyond their King tidal radii and fill their Jacobi radii in the form of “extended stellar haloes”. In some cases, because of the interaction with the Milky Way, stars are able to exceed the Jacobi radius, generating tidal tails which may be used to trace the mass distribution in the Galaxy. In this work, we use the precious information provided by the space mission Gaia (photometry, parallaxes and proper motions) to analyze NGC 362 in the search for member stars in its surroundings. Our preliminar results suggest that it is possible to identify member stars and tidal features up to distances of a few degrees from the globular cluster center.


2017 ◽  
Vol 13 (S334) ◽  
pp. 38-42 ◽  
Author(s):  
Sarah L Martell

AbstractThe Galactic halo has a complex assembly history, which can be seen in its wealth of kinematic and chemical substructure. Globular clusters lose stars through tidal interactions with the Galaxy and cluster evaporation processes, meaning that they are inevitably a source of halo stars. These “migrants” from globular clusters can be recognized in the halo field by the characteristic light element abundance anticorrelations that are commonly observed only in globular cluster stars, and the number of halo stars that can be chemically tagged to globular clusters can be used to place limits on the formation pathways of those clusters.


2019 ◽  
Vol 488 (1) ◽  
pp. 1235-1247 ◽  
Author(s):  
G C Myeong ◽  
E Vasiliev ◽  
G Iorio ◽  
N W Evans ◽  
V Belokurov

AbstractThe Gaia Sausage is the major accretion event that built the stellar halo of the Milky Way galaxy. Here, we provide dynamical and chemical evidence for a second substantial accretion episode, distinct from the Gaia Sausage. The Sequoia Event provided the bulk of the high-energy retrograde stars in the stellar halo, as well as the recently discovered globular cluster FSR 1758. There are up to six further globular clusters, including ω Centauri, as well as many of the retrograde substructures in Myeong et al., associated with the progenitor dwarf galaxy, named the Sequoia. The stellar mass in the Sequoia galaxy is ∼5 × 10  M⊙ , whilst the total mass is ∼1010 M⊙ , as judged from abundance matching or from the total sum of the globular cluster mass. Although clearly less massive than the Sausage, the Sequoia has a distinct chemodynamical signature. The strongly retrograde Sequoia stars have a typical eccentricity of ∼0.6, whereas the Sausage stars have no clear net rotation and move on predominantly radial orbits. On average, the Sequoia stars have lower metallicity by ∼0.3 dex and higher abundance ratios as compared to the Sausage. We conjecture that the Sausage and the Sequoia galaxies may have been associated and accreted at a comparable epoch.


2019 ◽  
Vol 491 (3) ◽  
pp. 4012-4022 ◽  
Author(s):  
Meghan E Hughes ◽  
Joel L Pfeffer ◽  
Marie Martig ◽  
Marta Reina-Campos ◽  
Nate Bastian ◽  
...  

ABSTRACT The α-element abundances of the globular cluster (GC) and field star populations of galaxies encode information about the formation of each of these components. We use the E-MOSAICS cosmological simulations of ∼L* galaxies and their GCs to investigate the [α/Fe]–[Fe/H] distribution of field stars and GCs in 25 Milky Way–mass galaxies. The [α/Fe]–[Fe/H] distribution of GCs largely follows that of the field stars and can also therefore be used as tracers of the [α/Fe]–[Fe/H] evolution of the galaxy. Due to the difference in their star formation histories, GCs associated with stellar streams (i.e. which have recently been accreted) have systematically lower [α/Fe] at fixed [Fe/H]. Therefore, if a GC is observed to have low [α/Fe] for its [Fe/H] there is an increased possibility that this GC was accreted recently alongside a dwarf galaxy. There is a wide range of shapes for the field star [α/Fe]–[Fe/H] distribution, with a notable subset of galaxies exhibiting bimodal distributions, in which the high [α/Fe] sequence is mostly comprised of stars in the bulge, a high fraction of which are from disrupted GCs. We calculate the contribution of disrupted GCs to the bulge component of the 25 simulated galaxies and find values between 0.3 and 14 per cent, where this fraction correlates with the galaxy’s formation time. The upper range of these fractions is compatible with observationally inferred measurements for the Milky Way, suggesting that in this respect the Milky Way is not typical of L*galaxies, having experienced a phase of unusually rapid growth at early times.


2020 ◽  
Vol 496 (1) ◽  
pp. 638-648 ◽  
Author(s):  
Timo L R Halbesma ◽  
Robert J J Grand ◽  
Facundo A Gómez ◽  
Federico Marinacci ◽  
Rüdiger Pakmor ◽  
...  

ABSTRACT We investigate whether the galaxy and star formation model used for the Auriga simulations can produce a realistic globular cluster (GC) population. We compare statistics of GC candidate star particles in the Auriga haloes with catalogues of the Milky Way (MW) and Andromeda (M31) GC populations. We find that the Auriga simulations do produce sufficient stellar mass for GC candidates at radii and metallicities that are typical for the MW GC system (GCS). We also find varying mass ratios of the simulated GC candidates relative to the observed mass in the MW and M31 GCSs for different bins of galactocentric radius metallicity (rgal–[Fe/H]). Overall, the Auriga simulations produce GC candidates with higher metallicities than the MW and M31 GCS and they are found at larger radii than observed. The Auriga simulations would require bound cluster formation efficiencies higher than 10 per cent for the metal-poor GC candidates, and those within the Solar radius should experience negligible destruction rates to be consistent with observations. GC candidates in the outer halo, on the other hand, should either have low formation efficiencies, or experience high mass-loss for the Auriga simulations to produce a GCS that is consistent with that of the MW or M31. Finally, the scatter in the metallicity as well as in the radial distribution between different Auriga runs is considerably smaller than the differences between that of the MW and M31 GCSs. The Auriga model is unlikely to give rise to a GCS that can be consistent with both galaxies.


2020 ◽  
Vol 500 (2) ◽  
pp. 2514-2524
Author(s):  
Joel Pfeffer ◽  
Carmela Lardo ◽  
Nate Bastian ◽  
Sara Saracino ◽  
Sebastian Kamann

ABSTRACT A number of the massive clusters in the halo, bulge, and disc of the Galaxy are not genuine globular clusters (GCs) but instead are different beasts altogether. They are the remnant nuclear star clusters (NSCs) of ancient galaxies since accreted by the Milky Way. While some clusters are readily identifiable as NSCs and can be readily traced back to their host galaxy (e.g. M54 and the Sagittarius Dwarf galaxy), others have proven more elusive. Here, we combine a number of independent constraints, focusing on their internal abundances and overall kinematics, to find NSCs accreted by the Galaxy and trace them to their accretion event. We find that the true NSCs accreted by the Galaxy are: M54 from the Sagittarius Dwarf, ω Centari from Gaia-Enceladus/Sausage, NGC 6273 from Kraken, and (potentially) NGC 6934 from the Helmi Streams. These NSCs are prime candidates for searches of intermediate-mass black holes (BHs) within star clusters, given the common occurrence of galaxies hosting both NSCs and central massive BHs. No NSC appears to be associated with Sequoia or other minor accretion events. Other claimed NSCs are shown not to be such. We also discuss the peculiar case of Terzan 5, which may represent a unique case of a cluster–cluster merger.


1964 ◽  
Vol 20 ◽  
pp. 354-357
Author(s):  
S. C. B. Gascoigne

There are about 50 clusters in the Magellanic Clouds which from their spherical symmetry, integrated colours, and luminosities appear similar to the globular clusters in the Galaxy. The colour-magnitude diagrams of these clusters should give moduli for the Clouds, indications of the age and chemical composition of the clusters themselves, and perhaps some information about the evolutionary tracks of old stars generally. The first investigation of this kind was carried out by Arp on the SMC clusters NGC 361 and 419. This was followed by papers by Eggen and Sandage and by the writer on NGC 1783 in the LMC, and by Tifft (1962) on NGC 121 in the SMC. Of these four clusters only NGC 121 appeared really similar to a galactic globular cluster, the others displaying features not reproduced by any known cluster in the Galaxy. Further work was clearly needed to clarify the problems raised by these results, and a program for the systematic observation of the colour-magnitude diagrams of red clusters in the Clouds was accordingly begun here in September 1961. This contribution is a progress report on this program.


Sign in / Sign up

Export Citation Format

Share Document