scholarly journals A note on the optimal dividends paid in a foreign currency

2016 ◽  
Vol 11 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Julia Eisenberg ◽  
Paul Krühner

AbstractWe consider an insurance entity endowed with an initial capital and a surplus process modelled as a Brownian motion with drift. It is assumed that the company seeks to maximise the cumulated value of expected discounted dividends, which are declared or paid in a foreign currency. The currency fluctuation is modelled as a Lévy process. We consider both cases: restricted and unrestricted dividend payments. It turns out that the value function and the optimal strategy can be calculated explicitly.

2020 ◽  
Vol 92 (2) ◽  
pp. 285-309
Author(s):  
Julia Eisenberg ◽  
Yuliya Mishura

AbstractWe consider an economic agent (a household or an insurance company) modelling its surplus process by a deterministic process or by a Brownian motion with drift. The goal is to maximise the expected discounted spending/dividend payments under a discounting factor given by an exponential CIR process. In the deterministic case, we are able to find explicit expressions for the optimal strategy and the value function. For the Brownian motion case, we are able to show that for a special parameter choice the optimal strategy is a constant-barrier strategy.


2020 ◽  
Vol 92 (3) ◽  
pp. 461-487 ◽  
Author(s):  
Kristoffer Lindensjö ◽  
Filip Lindskog

AbstractWe study a singular stochastic control problem faced by the owner of an insurance company that dynamically pays dividends and raises capital in the presence of the restriction that the surplus process must be above a given dividend payout barrier in order for dividend payments to be allowed. Bankruptcy occurs if the surplus process becomes negative and there are proportional costs for capital injection. We show that one of the following strategies is optimal: (i) Pay dividends and inject capital in order to reflect the surplus process at an upper barrier and at 0, implying bankruptcy never occurs. (ii) Pay dividends in order to reflect the surplus process at an upper barrier and never inject capital—corresponding to absorption at 0—implying bankruptcy occurs the first time the surplus reaches zero. We show that if the costs of capital injection are low, then a sufficiently high dividend payout barrier will change the optimal strategy from type (i) (without bankruptcy) to type (ii) (with bankruptcy). Moreover, if the costs are high, then the optimal strategy is of type (ii) regardless of the dividend payout barrier. We also consider the possibility for the owner to choose a stopping time at which the insurance company is liquidated and the owner obtains a liquidation value. The uncontrolled surplus process is a Wiener process with drift.


2007 ◽  
Vol 39 (3) ◽  
pp. 669-689 ◽  
Author(s):  
Jostein Paulsen

The problem of optimal dividends paid until absorbtion at zero is considered for a rather general diffusion model. With each dividend payment there is a proportional cost and a fixed cost. It is shown that there can be essentially three different solutions depending on the model parameters and the costs. (i) Whenever assets reach a barrier y*, they are reduced to y* - δ* through a dividend payment, and the process continues. (ii) Whenever assets reach a barrier y*, everything is paid out as dividends and the process terminates. (iii) There is no optimal policy, but the value function is approximated by policies of one of the two above forms for increasing barriers. A method to numerically find the optimal policy (if it exists) is presented and numerical examples are given.


2007 ◽  
Vol 39 (03) ◽  
pp. 669-689 ◽  
Author(s):  
Jostein Paulsen

The problem of optimal dividends paid until absorbtion at zero is considered for a rather general diffusion model. With each dividend payment there is a proportional cost and a fixed cost. It is shown that there can be essentially three different solutions depending on the model parameters and the costs. (i) Whenever assets reach a barrier y *, they are reduced to y * - δ* through a dividend payment, and the process continues. (ii) Whenever assets reach a barrier y *, everything is paid out as dividends and the process terminates. (iii) There is no optimal policy, but the value function is approximated by policies of one of the two above forms for increasing barriers. A method to numerically find the optimal policy (if it exists) is presented and numerical examples are given.


Risks ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 83 ◽  
Author(s):  
Krzysztof Dȩbicki ◽  
Lanpeng Ji ◽  
Tomasz Rolski

We consider a two-dimensional ruin problem where the surplus process of business lines is modelled by a two-dimensional correlated Brownian motion with drift. We study the ruin function P ( u ) for the component-wise ruin (that is both business lines are ruined in an infinite-time horizon), where u is the same initial capital for each line. We measure the goodness of the business by analysing the adjustment coefficient, that is the limit of - ln P ( u ) / u as u tends to infinity, which depends essentially on the correlation ρ of the two surplus processes. In order to work out the adjustment coefficient we solve a two-layer optimization problem.


2004 ◽  
Vol 34 (1) ◽  
pp. 49-74 ◽  
Author(s):  
David C.M. Dickson ◽  
Howard R. Waters

We consider a situation originally discussed by De Finetti (1957) in which a surplus process is modified by the introduction of a constant dividend barrier. We extend some known results relating to the distribution of the present value of dividend payments until ruin in the classical risk model and show how a discrete time risk model can be used to provide approximations when analytic results are unavailable. We extend the analysis by allowing the process to continue after ruin.


2020 ◽  
Vol 10 (1) ◽  
pp. 235-259
Author(s):  
Katharina Bata ◽  
Hanspeter Schmidli

AbstractWe consider a risk model in discrete time with dividends and capital injections. The goal is to maximise the value of a dividend strategy. We show that the optimal strategy is of barrier type. That is, all capital above a certain threshold is paid as dividend. A second problem adds tax to the dividends but an injection leads to an exemption from tax. We show that the value function fulfils a Bellman equation. As a special case, we consider the case of premia of size one. In this case we show that the optimal strategy is a two barrier strategy. That is, there is a barrier if a next dividend of size one can be paid without tax and a barrier if the next dividend of size one will be taxed. In both models, we illustrate the findings by de Finetti’s example.


2015 ◽  
Vol 30 (2) ◽  
pp. 224-243 ◽  
Author(s):  
Hui Meng ◽  
Ming Zhou ◽  
Tak Kuen Siu

A combined optimal dividend/reinsurance problem with two types of insurance claims, namely the expected premium principle and the variance premium principle, is discussed. Dividend payments are considered with both fixed and proportional transaction costs. The objective of an insurer is to determine an optimal dividend–reinsurance policy so as to maximize the expected total value of discounted dividend payments to shareholders up to ruin time. The problem is formulated as an optimal regular-impulse control problem. Closed-form solutions for the value function and optimal dividend–reinsurance strategy are obtained in some particular cases. Finally, some numerical analysis is given to illustrate the effects of safety loading on optimal reinsurance strategy.


2018 ◽  
Vol 24 (2) ◽  
pp. 873-899 ◽  
Author(s):  
Mingshang Hu ◽  
Falei Wang

The present paper considers a stochastic optimal control problem, in which the cost function is defined through a backward stochastic differential equation with infinite horizon driven by G-Brownian motion. Then we study the regularities of the value function and establish the dynamic programming principle. Moreover, we prove that the value function is the unique viscosity solution of the related Hamilton−Jacobi−Bellman−Isaacs (HJBI) equation.


2012 ◽  
Vol 12 (1) ◽  
pp. 47
Author(s):  
Tohap Manurung

HUBUNGAN ANTARA BROWNIAN MOTION (THE WIENER PROCESS) DAN SURPLUS PROCESS ABSTRAK Suatu analisis model continous-time menjadi cakupan yang akan dibahas dalam tulisan ini. Dengan demikian pengenalan proses stochastic akan sangat berperan. Dua proses akan di analisis yaitu proses compound Poisson dan Brownian motion. Proses compound Poisson sudah menjadi model standard untuk Ruin analysis dalam ilmu aktuaria. Sementara Brownian motion sangat berguna dalam teori keuangan modern dan juga dapat digunakan sebagai approksimasi untuk proses compound Poisson. Hal penting dalam tulisan ini adalah menujukkan bagaimana surplus process berdasarkan proses resiko compound Poisson dihubungkan dengan Brownian motion with Drift Process. Kata kunci: Brownian motion with Drift process, proses surplus, compound Poisson   RELATIONSHIP  BETWEEN  BROWNIAN MOTION (THE WIENER PROCESS) AND THE SURPLUS PROCESS ABSTRACT An analysis of continous-time models is covered in this paper. Thus, this requires an introduction to stochastic processes. Two processes are analyzed: the compound Poisson process and Brownian motion. The compound Poisson process has been the standard model for ruin analysis in actuarial science, while Brownian motion has found considerable use in modern financial theory and also can be used as an approximation to the compound Pisson process. The important thing is to show how the surplus process based on compound poisson risk process is related to Brownian motion with drift process. Keywords: Brownian motion with drift process, surplus process, compound Poisson


Sign in / Sign up

Export Citation Format

Share Document