scholarly journals Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population

animal ◽  
2013 ◽  
Vol 7 (11) ◽  
pp. 1759-1768 ◽  
Author(s):  
M. Pszczola ◽  
R.F. Veerkamp ◽  
Y. de Haas ◽  
E. Wall ◽  
T. Strabel ◽  
...  
Animals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 672 ◽  
Author(s):  
Beatriz Castro Dias Castro Dias Cuyabano ◽  
Hanna Wackel ◽  
Donghyun Shin ◽  
Cedric Gondro

Genomic models that incorporate dense marker information have been widely used for predicting genomic breeding values since they were first introduced, and it is known that the relationship between individuals in the reference population and selection candidates affects the prediction accuracy. When genomic evaluation is performed over generations of the same population, prediction accuracy is expected to decay if the reference population is not updated. Therefore, the reference population must be updated in each generation, but little is known about the optimal way to do it. This study presents an empirical assessment of the prediction accuracy of genomic breeding values of production traits, across five generations in two Korean pig breeds. We verified the decay in prediction accuracy over time when the reference population was not updated. Additionally we compared the prediction accuracy using only the previous generation as the reference population, as opposed to using all previous generations as the reference population. Overall, the results suggested that, although there is a clear need to continuously update the reference population, it may not be necessary to keep all ancestral genotypes. Finally, comprehending how the accuracy of genomic prediction evolves over generations within a population adds relevant information to improve the performance of genomic selection.


2013 ◽  
Vol 91 (10) ◽  
pp. 4669-4678 ◽  
Author(s):  
L. Chen ◽  
F. Schenkel ◽  
M. Vinsky ◽  
D. H. Crews ◽  
C. Li

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Richard Bernstein ◽  
Manuel Du ◽  
Andreas Hoppe ◽  
Kaspar Bienefeld

Abstract Background With the completion of a single nucleotide polymorphism (SNP) chip for honey bees, the technical basis of genomic selection is laid. However, for its application in practice, methods to estimate genomic breeding values need to be adapted to the specificities of the genetics and breeding infrastructure of this species. Drone-producing queens (DPQ) are used for mating control, and usually, they head non-phenotyped colonies that will be placed on mating stations. Breeding queens (BQ) head colonies that are intended to be phenotyped and used to produce new queens. Our aim was to evaluate different breeding program designs for the initiation of genomic selection in honey bees. Methods Stochastic simulations were conducted to evaluate the quality of the estimated breeding values. We developed a variation of the genomic relationship matrix to include genotypes of DPQ and tested different sizes of the reference population. The results were used to estimate genetic gain in the initial selection cycle of a genomic breeding program. This program was run over six years, and different numbers of genotyped queens per year were considered. Resources could be allocated to increase the reference population, or to perform genomic preselection of BQ and/or DPQ. Results Including the genotypes of 5000 phenotyped BQ increased the accuracy of predictions of breeding values by up to 173%, depending on the size of the reference population and the trait considered. To initiate a breeding program, genotyping a minimum number of 1000 queens per year is required. In this case, genetic gain was highest when genomic preselection of DPQ was coupled with the genotyping of 10–20% of the phenotyped BQ. For maximum genetic gain per used genotype, more than 2500 genotyped queens per year and preselection of all BQ and DPQ are required. Conclusions This study shows that the first priority in a breeding program is to genotype phenotyped BQ to obtain a sufficiently large reference population, which allows successful genomic preselection of queens. To maximize genetic gain, DPQ should be preselected, and their genotypes included in the genomic relationship matrix. We suggest, that the developed methods for genomic prediction are suitable for implementation in genomic honey bee breeding programs.


Author(s):  
Sarah Vosgerau ◽  
Nina Krattenmacher ◽  
Clemens Falker-Gieske ◽  
Anita Seidel ◽  
Jens Tetens ◽  
...  

Abstract  Reliability of genomic predictions is influenced by the size and genetic composition of the reference population. For German Warmblood horses, compilation of a reference population has been enabled through the cooperation of five German breeding associations. In this study, preliminary data from this joint reference population were used to genetically and genomically characterize withers height and to apply single-step methodology for estimating genomic breeding values for withers height. Using data on 2113 mares and their genomic information considering about 62,000 single nucleotide polymorphisms (SNPs), analysis of the genomic relationship revealed substructures reflecting breed origin and different breeding goals of the contributing breeding associations. A genome-wide association study confirmed a known quantitative trait locus (QTL) for withers height on equine chromosome (ECA) 3 close to LCORL and identified a further significant peak on ECA 1. Using a single-step approach with a combined relationship matrix, the estimated heritability for withers height was 0.31 (SE = 0.08) and the corresponding genomic breeding values ranged from − 2.94 to 2.96 cm. A mean reliability of 0.38 was realized for these breeding values. The analyses of withers height showed that compiling a reference population across breeds is a suitable strategy for German Warmblood horses. The single-step method is an appealing approach for practical genomic prediction in horses, because not many genotypes are available yet and animals without genotypes can by this way directly contribute to the estimation system.


2014 ◽  
Vol 92 (8) ◽  
pp. 3270-3283 ◽  
Author(s):  
M. Khansefid ◽  
J. E. Pryce ◽  
S. Bolormaa ◽  
S. P. Miller ◽  
Z. Wang ◽  
...  

2020 ◽  
Vol 60 (6) ◽  
pp. 772
Author(s):  
Francisco J. Jahuey-Martínez ◽  
Gaspar M. Parra-Bracamonte ◽  
Dorian J. Garrick ◽  
Nicolás López-Villalobos ◽  
Juan C. Martínez-González ◽  
...  

Context Genomic prediction is now routinely used in many livestock species to rank individuals based on genomic breeding values (GEBV). Aims This study reports the first assessment aimed to evaluate the accuracy of direct GEBV for birth (BW) and weaning (WW) weights of registered Charolais cattle in Mexico. Methods The population assessed included 823 animals genotyped with an array of 77000 single nucleotide polymorphisms. Genomic prediction used genomic best linear unbiased prediction (GBLUP), Bayes C (BC), and single-step Bayesian regression (SSBR) methods in comparison with a pedigree-based BLUP method. Key results Our results show that the genomic prediction methods provided low and similar accuracies to BLUP. The prediction accuracy of GBLUP and BC were identical at 0.31 for BW and 0.29 for WW, similar to BLUP. Prediction accuracies of SSBR for BW and WW were up to 4% higher than those by BLUP. Conclusions Genomic prediction is feasible under current conditions, and provides a slight improvement using SSBR. Implications Some limitations on reference population size and structure were identified and need to be addressed to obtain more accurate predictions in liveweight traits under the prevalent cattle breeding conditions of Mexico.


2011 ◽  
Vol 89 (11) ◽  
pp. 3353-3361 ◽  
Author(s):  
F. D. N. Mujibi ◽  
J. D. Nkrumah ◽  
O. N. Durunna ◽  
P. Stothard ◽  
J. Mah ◽  
...  

2018 ◽  
Vol 98 (4) ◽  
pp. 809-817 ◽  
Author(s):  
Raphael Boré ◽  
Luiz F. Brito ◽  
Mohsen Jafarikia ◽  
Alban Bouquet ◽  
Laurence Maignel ◽  
...  

Combining reference populations from different countries and breeds could be an affordable way to enlarge the size of the reference populations for genomic prediction of breeding values. Therefore, the main objectives of this study were to assess the genetic diversity within and between two Canadian and French pig breeds (Landrace and Yorkshire) and the genomic relatedness among populations to evaluate the feasibility of an across-country reference population for pig genomic selection. A total of 14 756 pigs were genotyped on two single nucleotide polymorphism (SNP) chip panels (∼65K SNPs). A principal component analysis clearly discriminated Landrace and Yorkshire breeds, and also, but to a lesser extent, the Canadian and French purebred pigs of each breed. Linkage disequilibrium (LD) between adjacent SNPs was similar within Yorkshire populations. However, levels of LD were slightly different for Landrace populations. The consistency of gametic phase was very high between Yorkshire populations (0.96 at 0.05 Mb) and high for Landrace (0.88 at 0.05 Mb). Based on consistency of gametic phase, Canadian and French pig maternal lines are genetically close to each other. These results are promising, as they indicate that the accuracy of estimated genomic breeding values may increase by combining reference populations from the two countries.


Sign in / Sign up

Export Citation Format

Share Document