scholarly journals SOME OBSERVATIONS ABOUT GENERALIZED QUANTIFIERS IN LOGICS OF IMPERFECT INFORMATION

2019 ◽  
Vol 12 (3) ◽  
pp. 456-486 ◽  
Author(s):  
FAUSTO BARBERO

AbstractWe analyse the two definitions of generalized quantifiers for logics of dependence and independence that have been proposed by F. Engström, comparing them with a more general, higher order definition of team quantifier. We show that Engström’s definitions (and other quantifiers from the literature) can be identified, by means of appropriate lifts, with special classes of team quantifiers. We point out that the new team quantifiers express a quantitative and a qualitative component, while Engström’s quantifiers only range over the latter. We further argue that Engström’s definitions are just embeddings of the first-order generalized quantifiers into team semantics, and fail to capture an adequate notion of team-theoretical generalized quantifier, save for the special cases in which the quantifiers are applied to flat formulas. We also raise several doubts concerning the meaningfulness of the monotone/nonmonotone distinction in this context. In the appendix we develop some proof theory for Engström’s quantifiers.

Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 51 ◽  
Author(s):  
Humaira Kalsoom ◽  
Saima Rashid ◽  
Muhammad Idrees ◽  
Yu-Ming Chu ◽  
Dumitru Baleanu

In this paper, we present a new definition of higher-order generalized strongly preinvex functions. Moreover, it is observed that the new class of higher-order generalized strongly preinvex functions characterize various new classes as special cases. We acquire a new q 1 q 2 -integral identity, then employing this identity, we establish several two-variable q 1 q 2 -integral inequalities of Simpson-type within a class of higher-order generalized strongly preinvex and quasi-preinvex functions. Finally, the utilities of our numerical approximations have concrete applications.


1992 ◽  
Vol 2 (1) ◽  
pp. 1-28 ◽  
Author(s):  
A. J. Power ◽  
Charles Wells

A type of higher-order two-dimensional sketch is defined which has models in suitable 2-categories. It has as special cases the ordinary sketches of Ehresmann and certain previously defined generalizations of one-dimensional sketches. These sketches allow the specification of constructions in 2-categories such as weighted limits, as well as higher-order constructions such as exponential objects and subobject classifiers, that cannot be sketched by limits and colimits. These sketches are designed to be the basis of a category-based methodology for the description of functional programming languages, complete with rewrite rules giving the operational semantics, that is independent of the usual specification methods based on formal languages and symbolic logic. A definition of ‘path grammar’, generalizing the usual notion of grammar, is given as a step towards this goal.


1996 ◽  
Vol 61 (3) ◽  
pp. 802-817 ◽  
Author(s):  
Lauri Hella ◽  
Kerkko Luosto ◽  
Jouko Väänänen

AbstractThe concept of a generalized quantifier of a given similarity type was defined in [12]. Our main result says that on finite structures different similarity types give rise to different classes of generalized quantifiers. More exactly, for every similarity type t there is a generalized quantifier of type t which is not definable in the extension of first order logic by all generalized quantifiers of type smaller than t. This was proved for unary similarity types by Per Lindström [17] with a counting argument. We extend his method to arbitrary similarity types.


Computability ◽  
2021 ◽  
pp. 1-31
Author(s):  
Sam Sanders

The program Reverse Mathematics (RM for short) seeks to identify the axioms necessary to prove theorems of ordinary mathematics, usually working in the language of second-order arithmetic L 2 . A major theme in RM is therefore the study of structures that are countable or can be approximated by countable sets. Now, countable sets must be represented by sequences here, because the higher-order definition of ‘countable set’ involving injections/bijections to N cannot be directly expressed in L 2 . Working in Kohlenbach’s higher-order RM, we investigate various central theorems, e.g. those due to König, Ramsey, Bolzano, Weierstrass, and Borel, in their (often original) formulation involving the definition of ‘countable set’ based on injections/bijections to N. This study turns out to be closely related to the logical properties of the uncountably of R, recently developed by the author and Dag Normann. Now, ‘being countable’ can be expressed by the existence of an injection to N (Kunen) or the existence of a bijection to N (Hrbacek–Jech). The former (and not the latter) choice yields ‘explosive’ theorems, i.e. relatively weak statements that become much stronger when combined with discontinuous functionals, even up to Π 2 1 - CA 0 . Nonetheless, replacing ‘sequence’ by ‘countable set’ seriously reduces the first-order strength of these theorems, whatever the notion of ‘set’ used. Finally, we obtain ‘splittings’ involving e.g. lemmas by König and theorems from the RM zoo, showing that the latter are ‘a lot more tame’ when formulated with countable sets.


1993 ◽  
Vol 3 (2) ◽  
pp. 123-152 ◽  
Author(s):  
John Hannan

AbstractWe extend the definition of natural semantics to include simply typed λ-terms, instead of first-order terms, for representing programs, and to include inference rules for the introduction and discharge of hypotheses and eigenvariables. This extension, which we call extended natural semantics, affords a higher-level notion of abstract syntax for representing programs and suitable mechanisms for manipulating this syntax. We present several examples of semantic specifications for a simple functional programming language and demonstrate how we achieve simple and elegant manipulations of bound variables in functional programs. All the examples have been implemented and tested in λProlog, a higher-order logic programming language that supports all of the features of extended natural semantics.


1996 ◽  
Vol 61 (3) ◽  
pp. 1006-1044 ◽  
Author(s):  
Natasha Alechina ◽  
Michiel Van Lambalgen

AbstractWe show how sequent calculi for some generalized quantifiers can be obtained by generalizing the Herbrand approach to ordinary first order proof theory. Typical of the Herbrand approach, as compared to plain sequent calculus, is increased control over relations of dependence between variables. In the case of generalized quantifiers, explicit attention to relations of dependence becomes indispensible for setting up proof systems. It is shown that this can be done by turning variables into structured objects, governed by various types of structural rules. These structured variables are interpreted semantically by means of a dependence relation. This relation is an analogue of the accessibility relation in modal logic. We then isolate a class of axioms for generalized quantifiers which correspond to first-order conditions on the dependence relation.


2019 ◽  
Vol 42 ◽  
Author(s):  
Daniel J. Povinelli ◽  
Gabrielle C. Glorioso ◽  
Shannon L. Kuznar ◽  
Mateja Pavlic

Abstract Hoerl and McCormack demonstrate that although animals possess a sophisticated temporal updating system, there is no evidence that they also possess a temporal reasoning system. This important case study is directly related to the broader claim that although animals are manifestly capable of first-order (perceptually-based) relational reasoning, they lack the capacity for higher-order, role-based relational reasoning. We argue this distinction applies to all domains of cognition.


Author(s):  
Julian M. Etzel ◽  
Gabriel Nagy

Abstract. In the current study, we examined the viability of a multidimensional conception of perceived person-environment (P-E) fit in higher education. We introduce an optimized 12-item measure that distinguishes between four content dimensions of perceived P-E fit: interest-contents (I-C) fit, needs-supplies (N-S) fit, demands-abilities (D-A) fit, and values-culture (V-C) fit. The central aim of our study was to examine whether the relationships between different P-E fit dimensions and educational outcomes can be accounted for by a higher-order factor that captures the shared features of the four fit dimensions. Relying on a large sample of university students in Germany, we found that students distinguish between the proposed fit dimensions. The respective first-order factors shared a substantial proportion of variance and conformed to a higher-order factor model. Using a newly developed factor extension procedure, we found that the relationships between the first-order factors and most outcomes were not fully accounted for by the higher-order factor. Rather, with the exception of V-C fit, all specific P-E fit factors that represent the first-order factors’ unique variance showed reliable and theoretically plausible relationships with different outcomes. These findings support the viability of a multidimensional conceptualization of P-E fit and the validity of our adapted instrument.


1996 ◽  
Vol 24 (1) ◽  
pp. 11-38 ◽  
Author(s):  
G. M. Kulikov

Abstract This paper focuses on four tire computational models based on two-dimensional shear deformation theories, namely, the first-order Timoshenko-type theory, the higher-order Timoshenko-type theory, the first-order discrete-layer theory, and the higher-order discrete-layer theory. The joint influence of anisotropy, geometrical nonlinearity, and laminated material response on the tire stress-strain fields is examined. The comparative analysis of stresses and strains of the cord-rubber tire on the basis of these four shell computational models is given. Results show that neglecting the effect of anisotropy leads to an incorrect description of the stress-strain fields even in bias-ply tires.


Sign in / Sign up

Export Citation Format

Share Document