Palaeoecological perspectives on Holocene environmental change in Scotland

Author(s):  
Kevin J. EDWARDS ◽  
K. D. BENNETT ◽  
Althea L. DAVIES

ABSTRACTPalaeoecology has been prominent in studies of environmental change during the Holocene epoch in Scotland. These studies have been dominated by palynology (pollen, spore and related bio-and litho-stratigraphic analyses) as a key approach to multi- and inter-disciplinary investigations of topics such as vegetation, climate and landscape change. This paper highlights some key dimensions of the pollen- and vegetation-based archive, with a focus upon woodland dynamics, blanket peat, human impacts, biodiversity and conservation. Following a brief discussion of chronological, climatic, faunal and landscape contexts, the migration, survival and nature of the woodland cover through time is assessed, emphasising its time-transgressiveness and altitudinal variation. While agriculture led to the demise of woodland in lowland areas of the south and east, the spread of blanket peat was especially a phenomenon of the north and west, including the Western and Northern Isles. Almost a quarter of Scotland is covered by blanket peat and the cause(s) of its spread continue(s) to evoke recourse to climatic, topographic, pedogenic, hydrological, biotic or anthropogenic influences, while we remain insufficiently knowledgeable about the timing of the formation processes. Humans have been implicated in vegetational change throughout the Holocene, with prehistoric woodland removal, woodland management, agricultural impacts arising from arable and pastoral activities, potential heathland development and afforestation. The viability of many current vegetation communities remains a concern, in that Scottish data show reductions in plant diversity over the last 400 years, which recent conservation efforts have yet to reverse. Palaeoecological evidence can be used to test whether conservation baselines and restoration targets are appropriate to longer-term ecosystem variability and can help identify when modern conditions have no past analogues.

2020 ◽  
Vol 49 (1) ◽  
pp. 67-82 ◽  
Author(s):  
Andrew S. Mathews

The Anthropocene, a proposed name for a geological epoch marked by human impacts on global ecosystems, has inspired anthropologists to critique, to engage in theoretical and methodological experimentation, and to develop new forms of collaboration. Critics are concerned that the term Anthropocene overemphasizes human mastery or erases differential human responsibilities, including imperialism, capitalism, and racism, and new forms of technocratic governance. Others find the term helpful in drawing attention to disastrous environmental change, inspiring a reinvigorated attention to the ontological unruliness of the world, to multiple temporal scales, and to intertwined social and natural histories. New forms of noticing can be linked to systems analytics, including capitalist world systems, structural comparisons of patchy landscapes, infrastructures and ecological models, emerging sociotechnical assemblages, and spirits. Rather than a historical epoch defined by geologists, the Anthropocene is a problem that is pulling anthropologists into new forms of noticing and analysis, and into experiments and collaborations beyond anthropology.


The Holocene ◽  
2011 ◽  
Vol 21 (7) ◽  
pp. 1037-1048 ◽  
Author(s):  
Bergrún Arna Óladóttir ◽  
Olgeir Sigmarsson ◽  
Gudrún Larsen ◽  
Jean-Luc Devidal

The Holocene eruption history of subglacial volcanoes in Iceland is largely recorded by their tephra deposits. The numerous basaltic tephra offer the possibility to make the tephrochronology in the North Atlantic area more detailed and, therefore, more useful as a tool not only in volcanology but also in environmental and archaeological studies. The source of a tephra is established by mapping its distribution or inferred via compositional fingerprinting, mainly based on major-element analyses. In order to improve the provenance determinations for basaltic tephra produced at Grímsvötn, Bárdarbunga and Kverkfjöll volcanic systems in Iceland, 921 samples from soil profiles around the Vatnajökull ice-cap were analysed for major-element concentrations by electron probe microanalysis. These samples are shown to represent 747 primary tephra units. The tephra erupted within each of these volcanic system has similar chemical characteristics. The major-element results fall into three distinctive compositional groups, all of which show regular decrease of MgO with increasing K2O concentrations. The new analyses presented here considerably improve the compositional distinction between products of the three volcanic systems. Nevertheless, slight overlap of the compositional groups for each system still remains. In situ trace-element analyses by laser-ablation-inductively-coupled-plasma-mass-spectrometry were applied for better provenance identification for those tephra having similar major-element composition. Three trace-element ratios, Rb/Y, La/Yb and Sr/Th, proved particularly useful. Significantly higher La/Yb distinguishes the Grímsvötn basalts from those of Bárdarbunga and Rb/Y values differentiate the basalts of Grímsvötn and Kverkfjöll. Additionally, the products of Bárdarbunga, Grímsvötn and Kverkfjöll form distinct compositional fields on a Sr/Th versus Th plot. Taken together, the combined use of major- and trace-element analyses in delineating the provenance of basaltic tephra having similar major-element composition significantly improves the Holocene tephra record as well as the potential for correlations with tephra from outside Iceland.


1995 ◽  
Vol 31 (8) ◽  
pp. 141-145 ◽  
Author(s):  
A. H. W. Beusen ◽  
O. Klepper ◽  
C. R. Meinardi

A model is described that aims at predicting surface water quality from N- and P-inputs on a European scale. The model combines a GIS-based approach to estimate loads, geohydrological data to define model structure and statistical techniques to estimate parameter values. The model starts with an inventory of sources of N and P: agriculture, wastewater and (for N) atmospheric deposition. Nitrogen flows are assumed to follow both surface- and groundwater flows, while for phosphorus only surface water flow is taken into account. A calibration of loss terms of N and P (assumed to be constants for the whole of Europe) by comparing total inputs to measured loads shows good agreement between observations and calculated river discharges. For the coastal seas of Europe concentrations are calculated by assuming conservative behaviour of N and P. Freshwater quality problems occur in western Europe with its intensive agriculture and high population density and locally in southern Europe where dilution is low due to low water discharge. In the marine environment the main problem areas are the Baltic and Black seas, with much lower impacts in the North and Adriatic Sea; in other coastal waters human impacts are essentially negligible.


2014 ◽  
Vol 41 (12) ◽  
pp. 4300-4307 ◽  
Author(s):  
Paige E. Newby ◽  
Bryan N. Shuman ◽  
Jeffrey P. Donnelly ◽  
Kristopher B. Karnauskas ◽  
Jeremiah Marsicek

2021 ◽  
Vol 118 (40) ◽  
pp. e2022216118 ◽  
Author(s):  
Kelsie E. Long ◽  
Larissa Schneider ◽  
Simon E. Connor ◽  
Niamh Shulmeister ◽  
Janet Finn ◽  
...  

The impacts of human-induced environmental change that characterize the Anthropocene are not felt equally across the globe. In the tropics, the potential for the sudden collapse of ecosystems in response to multiple interacting pressures has been of increasing concern in ecological and conservation research. The tropical ecosystems of Papua New Guinea are areas of diverse rainforest flora and fauna, inhabited by human populations that are equally diverse, both culturally and linguistically. These people and the ecosystems they rely on are being put under increasing pressure from mineral resource extraction, population growth, land clearing, invasive species, and novel pollutants. This study details the last ∼90 y of impacts on ecosystem dynamics in one of the most biologically diverse, yet poorly understood, tropical wetland ecosystems of the region. The lake is listed as a Ramsar wetland of international importance, yet, since initial European contact in the 1930s and the opening of mineral resource extraction facilities in the 1990s, there has been a dramatic increase in deforestation and an influx of people to the area. Using multiproxy paleoenvironmental records from lake sediments, we show how these anthropogenic impacts have transformed Lake Kutubu. The recent collapse of algal communities represents an ecological tipping point that is likely to have ongoing repercussions for this important wetland’s ecosystems. We argue that the incorporation of an adequate historical perspective into models for wetland management and conservation is critical in understanding how to mitigate the impacts of ecological catastrophes such as biodiversity loss.


2021 ◽  
Vol 10 (12) ◽  
pp. 455
Author(s):  
Hongyun Han ◽  
Sheng Xia

Since the Industrial Revolution, a new era has arisen called the Anthropocene, in which human actions have become the main driver of global environmental change outside the stable environmental state of the Holocene. During the Holocene, environmental change occurred naturally, and the Earth’s regulatory capacity maintained the conditions that enabled human development. Resource overexploitation of the industrial “Anthropocene”, under the principle of profit maximization, has led to planetary ecological crises, such as overloaded carbon sinks and climate changes, vanishing species, degraded ecosystems, and insufficient natural resources. Agro-based society, in which almost all demands of humans can be supported by agriculture, is characterized by life production. The substitution of Agro-based society for a post-industrial society is an evolutionary result of social movement, it is an internal requirement of a sustainable society for breaking through the resource constraint of economic growth. The core feature of agriculture is to use organisms as production objects and rely on life processes to achieve production goals. The substitution of Agro-based society for a post-industrial society is the precondition for a sustainable carbon cycle, breaking through the resource limits of the industrial “Anthropocene”, alleviating the environmental pressure of economic development, and promoting society from increasing disorderly entropy to orderly decreasing entropy. Meanwhile, technological advancements and growing environmental awareness of society make it feasible for the substitution of an agro-based society for a post-industrial society.


Sign in / Sign up

Export Citation Format

Share Document