GaN devices for communication applications: evolution of amplifier architectures

Author(s):  
Ulf Schmid ◽  
Rolf Reber ◽  
Sébastien Chartier ◽  
Kristina Widmer ◽  
Martin Oppermann ◽  
...  

This paper presents the design and implementation of power amplifiers using high-power gallium nitride (GaN) high electronic mobility transistor (HEMT) powerbars and monolithic microwave integrated circuits (MMICs). The first amplifier is a class AB implementation for worldwide interoperability for microwave access (WiMAX) applications with emphasis on a low temperature cofired ceramics (LTCC) packaging solution. The second amplifier is a class S power amplifier using a high power GaN HEMT MMIC. For a 450 MHz continuous wave (CW) signal, the measured output power is 5.8 W and drain efficiency is 18.5%. Based on time domain simulations, loss mechanisms are identified and optimization steps are discussed.

Author(s):  
Richard G. Sartore

In the evaluation of GaAs devices from the MMIC (Monolithic Microwave Integrated Circuits) program for Army applications, there was a requirement to obtain accurate linewidth measurements on the nominal 0.5 micrometer gate lengths used to fabricate these devices. Preliminary measurements indicated a significant variation (typically 10 % to 30% but could be more) in the critical dimensional measurements of the gate length, gate to source distance and gate to drain distance. Passivation introduced a margin of error, which was removed by plasma etching. Additionally, the high aspect ratio (4-5) of the thick gold (Au) conductors also introduced measurement difficulties. The final measurements were performed after the thick gold conductor was removed and only the barrier metal remained, which was approximately 250 nanometer thick platinum on GaAs substrate. The thickness was measured using the penetration voltage method. Linescan of the secondary electron signal as it scans across the gate is shown in Figure 1.


Sign in / Sign up

Export Citation Format

Share Document