Laser induced microwave oscillator under the influence of interference

2014 ◽  
Vol 6 (6) ◽  
pp. 581-590 ◽  
Author(s):  
Arindum Mukherjee ◽  
Somnath Chatterjee ◽  
Nikhil Ranjan Das ◽  
Baidyanath Biswas

An optoelectronic oscillator (OEO) under the influence of a weak interference has been investigated. The system equation of the OEO under the influence of interference has been derived. A novel technique for calculating the lock range of the oscillator using the harmonic balance method in presence of interference has been demonstrated. Theoretical analysis coupled with experimental results has been presented.

2020 ◽  
Vol 12 (3) ◽  
pp. 168781401989721 ◽  
Author(s):  
Haiou Sun ◽  
Meng Wang ◽  
Zhongyi Wang ◽  
Song Wang ◽  
Franco Magagnato

To improve the understanding of unsteady flow in modern advanced axial compressor, unsteady simulations on full-annulus multi-stage axial compressor are carried out with the harmonic balance method. Since the internal flow in turbomachinery is naturally periodic, the harmonic balance method can be used to reduce the computational cost. In order to verify the accuracy of the harmonic balance method, the numerical results are first compared with the experimental results. The results show that the internal flow field and the operating characteristics of the multi-stage axial compressor obtained by the harmonic balance method coincide with the experimental results with the relative error in the range of 3%. Through the analysis of the internal flow field of the axial compressor, it can be found that the airflow in the clearance of adjacent blade rows gradually changes from axisymmetric to non-axisymmetric and then returns to almost completely axisymmetric distribution before the downstream blade inlet, with only a slight non-axisymmetric distribution, which can be ignored. Moreover, the slight non-axisymmetric distribution will continue to accumulate with the development of the flow and, finally, form a distinct circumferential non-uniform flow field in latter stages, which may be the reason why the traditional single-passage numerical method will cause certain errors in multi-stage axial compressor simulations.


Author(s):  
Jong-Yun Yoon ◽  
Hwan-Sik Yoon

This paper presents the nonlinear frequency response of a multistage clutch damper system in the framework of the harmonic balance method. For the numerical analysis, a multistage clutch damper with multiple nonlinearities is modeled as a single degree-of-freedom torsional system subjected to sinusoidal excitations. The nonlinearities include piecewise-linear stiffness, hysteresis, and preload all with asymmetric transition angles. Then, the nonlinear frequency response of the system is numerically obtained by applying the Newton–Raphson method to a system equation formulated by using the harmonic balance method. The resulting nonlinear frequency response is then compared with that obtained by direct numerical simulation of the system in the time domain. Using the simulation results, the stability characteristics and existence of quasi-harmonic response of the system are investigated. Also, the effect of stiffness values on the dynamic performance of the system is examined.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Huijian Zhu

This paper deals with the problem of determining the conditions under which fractional order Rössler toroidal system can give rise to chaotic behavior. Based on the harmonic balance method, four detailed steps are presented for predicting the existence and the location of chaotic motions. Numerical simulations are performed to verify the theoretical analysis by straightforward computations.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Jing Gao

This paper develops a theoretical analysis of harmonic balance method, based on the cubic spline wavelet and Daubechies wavelet, for steady state analysis of nonlinear circuits under periodic excitation. The properties of the resulting Jacobian matrix for harmonic balance are analyzed. Numerical experiments illustrate the theoretical analysis.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650200 ◽  
Author(s):  
Wei Liu ◽  
Faqiang Wang ◽  
Xikui Ma

In recent years, memristor has become one of the research focuses. Considerable open literature has shown that many devices and systems possess memristive properties. Thus, research into supplying power source to these special devices and making them work steadily has been a meaningful study. This paper investigates the slow-scale instability whose oscillating frequency is between the line frequency and the switch frequency that occurs in a voltage controlled H-bridge inverter with memristive load. The mechanism of this medium-frequency oscillation is identified via harmonic balance method and Floquet theory. The results show that it is due to the occurrence of Hopf bifurcation. Finally, experimental results are presented to verify the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document