Nonlinear modeling, time-domain analysis and simulation of non-Foster elements

2016 ◽  
Vol 9 (4) ◽  
pp. 747-755
Author(s):  
Hamed Khoshniyat ◽  
Abdolali Abdipour ◽  
Gholamreza Moradi

In this paper, the structure of a common field-effect transistor (FET)-based negative impedance converter (NIC) that behaves as a negative capacitor is presented. The nonlinear modeling, analysis, and simulation of this non-Foster structure are presented in the time domain and the transient response of the circuit can be used to study the stability of the circuit. For the analysis of the circuit performance, the linear time-dependent modeling approach is used. This method is based on determination of the circuit parameters at each step according to parameters of the previous steps, bias voltages, and the input signal. Results of the proposed method for analysis of non-Foster circuit are compared with those of nonlinear analysis using commercial software, which shows a good agreement together and the proposed method is validated. Based on the analysis, the nonlinear capacitance of non-Foster circuit is extracted and based on the simple second order model of current source of FET, the analytic model of negative capacitor is extracted and improved by curve fitting. The proposed model results have a good agreement with simulation results of NIC's circuit.

Author(s):  
Ge´rson B. Matter ◽  
Joel S. Sales ◽  
Sergio H. Sphaier

The paper deals with the dynamics of floating systems (FPSO units) moored in deep water in the presence of currents. The offloading operation is carried out in a tandem arrangement from the FPSO to a Shuttle ship of lesser capacity. According to the classical theory of dynamic systems, a study of the behavior of floating units is performed by determining the equilibrium position and then analyzing the stability around this position. The time domain analysis is also used to compare the results. This procedure is extended to the case of systems in a spread mooring configuration and with turret.


1994 ◽  
Vol 116 (4) ◽  
pp. 781-786 ◽  
Author(s):  
C. J. Goh

The convergence of learning control is traditionally analyzed in the time domain. This is because a finite planning horizon is often assumed and the analysis in time domain can be extended to time-varying and nonlinear systems. For linear time-invariant (LTI) systems with infinite planning horizon, however, we show that simple frequency domain techniques can be used to quickly derive several interesting results not amenable to time-domain analysis, such as predicting the rate of convergence or the design of optimum learning control law. We explain a paradox arising from applying the finite time convergence criterion to the infinite time learning control problem, and propose the use of current error feedback for controlling possibly unstable systems.


2004 ◽  
Vol 2004 (6) ◽  
pp. 471-486 ◽  
Author(s):  
Ioannis G. Stratis ◽  
Athanasios N. Yannacopoulos

We present several recent and novel results on the formulation and the analysis of the equations governing the evolution of electromagnetic fields in chiral media in the time domain. In particular, we present results concerning the well-posedness and the solvability of the problem for linear, time-dependent, and nonlocal media, andresults concerning the validity of the local approximation of the nonlocal medium (optical response approximation). The paper concludes with the study of a class of nonlinear chiral media exhibiting Kerr-like nonlinearities, for which the existence of bright and dark solitary waves is shown.


Author(s):  
Jiaguo Feng ◽  
Yi Yu ◽  
Yan Qu ◽  
Wenhui Xie ◽  
Min Wu ◽  
...  

Abstract The stability of platform is important to ensure the platforms are safe, especially during the mooring line breaking process in typhoon condition. The paper presents a stability analysis method for floating platforms of the mooring line breaking process based on the time-domain analysis. The time-domain simulation during the mooring line breaking is provided. The time of the mooring line break, the max tilt angle of platform and the amended equivalent overturning moment are calculated for the stability analysis. The results show that the platform would have a serious tilt when the mooring line breaks, this increases the overturning moments and may cause the platform not meets the stability requirements during this process. It is necessary to pay attention to the stability problem during the mooring line breaking process in typhoon condition. And properly locating the down-flooding points is recommended to avoide the stability problem.


2016 ◽  
Author(s):  
Kai Wang ◽  
Vasilis A. Riziotis ◽  
Spyros G. Voutsinas

Abstract. Wind turbine rotors in idling operation mode can experience high angles of attack, within the post stall region that are capable of triggering stall-induced vibrations. In the present paper, rotor stability in slow idling operation is assessed on the basis of non-linear time domain and linear eigenvalue analyses. Analysis is performed for a 10 MW conceptual wind turbine designed by DTU. First, the flow conditions that are likely to favour stall induced instabilities are identified through non-linear time domain aeroelastic simulations. Next, for the above specified conditions, eigenvalue stability simulations are performed aiming at identifying the low damped modes of the turbine. The eigenvalue stability results are evaluated through computations of the work of the aerodynamic forces under imposed harmonic motion following the shape and frequency of the various modes. Eigenvalue analysis indicates that the asymmetric and symmetric out-of-plane modes have the lowest damping. The results of the eigenvalue analysis agree well with those of the non-linear work analysis and the time domain analysis.


Author(s):  
Kasper Wåsjø ◽  
Terje P. Stavang ◽  
Tore H. Søreide

Experience from model tests has initiated a growing attention towards extreme wave slam as a critical load situation for offshore large volume structures. Most of the problem is related to the local slam pressure, which may go up to several MPa’s for 100-year and 10 000-year waves. The paper deals with modeling techniques for marine concrete structures under extreme slam loading from waves where dynamic effects together with material softening play a major role for the response. Different analysis approaches for ultimate limit state (ULS) and accidental limit state (ALS) controls are discussed in view of reliability philosophy as basis for conventional design approach. The present paper is devoted to the local impact scenario and the alternative approaches for response and capacity control involving non-linear time domain analyses. Conventional design schemes as based on linear elastic models for response calculation together with code specified capacity control often come out more conservative than non-linear approach. The paper demonstrates by case studies how softening of the structure in general reduces the response in terms of section forces. A key issue when going from conventional linear approaches into non-linear techniques is to still keep an acceptable reliability level on the capacity control. Load and material factors are normally based on structures with limited non-linearity where linear response modeling is representative. Implementing non-linear material model in time domain analysis has a major challenge in limiting the sensitivity in response and capacity calculation. The paper demonstrates the way material model of concrete affects the section forces to go into local capacity control, and concludes on needed sensitivity analyses. Practical approaches on the concrete slam problem together with resulting utilizations from the control are demonstrated. The full non-linear technique by response and capacity control in one analysis is also handled, using average material parameters and justifying safety factors for the effect of implementing characteristic lower strength of concrete in the capacity. The paper ends up in a recommendation on non-linear time domain analysis procedure for typically slam problems. A discussion is also given on applicable design codes with attention to non-linear analysis.


Sign in / Sign up

Export Citation Format

Share Document