Double-ring multiband microstrip patch antenna with parasitic strip structure for heterogeneous wireless communication systems

2017 ◽  
Vol 9 (8) ◽  
pp. 1757-1762
Author(s):  
Geetanjali Singla ◽  
Rajesh Khanna

In this paper, a novel design of compact Coplanar Waveguide-fed planar monopole antenna with enhanced bandwidth and multiband characteristics has been proposed. Two rectangular rings have been incorporated in a rectangular patch to obtain multiband operation for Wireless Local Area Network (WLAN) (2.4/5.2/5.8 GHz) and Worldwide Interoperability for Microwave Access (WiMAX) (2.3/2.5/5.5 GHz) bands. A parasitic strip and meandering along with double-ringed structure have been used to achieve enhanced impedance bandwidth in WLAN (from 2.26 to 3.03 GHz) and WiMAX (from 4.48 to 6.85 GHz) bands. The parametric analysis is carried out to study effect of varying dimensions on antenna performance. The proposed antenna is optimized and prototype is designed and fabricated. Simulated and measured radiation patterns in elevation and azimuthal planes are also observed. The antenna shows significant gain of 7.33 dBi at 6.54 GHz frequency.

2014 ◽  
Vol 8 (2) ◽  
pp. 277-281 ◽  
Author(s):  
Tang Yang ◽  
Gao Wen ◽  
Gao Jinsong ◽  
Feng Xiaoguo

In this paper a novel compact multi-band printed coplanar waveguide (CPW)-feed antenna for wireless local area network (WLAN)/WiMAX/RFID applications is proposed. The proposed antenna is composed of a multi-triangular structure as metal ground plane and the radiation element with four different branches, both of the structures are printed on the same side of a substrate and the antenna is fed by a CPW. By carefully tuning the locations and the sizes of these four branches, the antenna can yield three different resonating frequencies to cover the desired bands for WLAN/WiMAX/RFID applications. The simulated and measured results demonstrate that the proposed antenna has the impedance bandwidth (for return loss less than −10 dB) of 700 MHz (2.2−2.9 GHz), 540 MHz (3.16–3.7 GHz), and 850 MHz (5.05–5.9 GHz), respectively, which can cover the WLAN 2.4/5.8 GHz bands, the WiMAX 2.5/3.5 GHz bands, and the RFID 2.45/5.8 GHz bands.


Author(s):  
Ketavath Kumar Naik

The kapton polyimide material is considered to design conformal antenna with spiral square for radio frequency identification (RFID) and wireless local area network (WLAN) applications. In this chapter, the analysis and investigation has been carried out with spiral square techniques using coplanar waveguide (CPW) feed. The proposed antenna operates at 5.8 GHz with impedance bandwidth of 170 MHz (5.73 - 5.9 GHz) with return loss -25.6 dB and gain is 2.4 dBi. The proposed antenna has considered with different bending angles for investigating the conformal characteristics due to flexibility of the material. These results are presented for omni-directional radiation patterns.


2018 ◽  
Vol 7 (5) ◽  
pp. 26-30
Author(s):  
M. Harbadji ◽  
A. Boufrioua ◽  
T. A. Denidni

This paper presents a novel compact coplanar waveguide (CPW) monopole fractal-shaped antenna using fractal patch composed of hexagons with defected ground plane. Inclusion of a pair of S-shaped slots on the ground plane is used to  extend the antenna impedance bandwidth and to provide multiband operation. The antenna has a compact size of 35×35×1.27 mm3 which is compact. The antenna is designed, fabricated and measured. Good performances in terms of return loss, gain and radiation pattern are obtained in the  operating bands, which makes the proposed antenna a good  candidate for multiband wireless systems. The obtained results show that the antenna operates at Bluetooth,Worldwide Interoperability for Microwave Access (WiMAX), and Wireless Local Area Network (WLAN).


The work in the paper demonstrates a rectangular microstrip patch antenna with a Z-shaped CSRR loading in the ground plane. A Z-shaped CSRR created in the ground plane, shown a 63.3% miniaturization in the radiating patch size compared to conventional rectangular patch antenna, resonating at 6.5GHz frequency in C-band. The simulation results find a significant increase in the fractional bandwidth (5.54%, with the centre frequency of 6.5GHz). Furthermore, the antenna has simulated gain of 2.83dB and return loss of -26.33dB at 6.5GHz. The electrical size of proposed antenna is 0.325λo × 0.260λo × 0.034λo (i.e., 15mm×12mm×1.6mm). The proposed antenna may find application in satellite communication systems in C-band and Wireless local area network (WLAN).


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 325-332 ◽  
Author(s):  
Han Xu ◽  
Kai-Da Xu ◽  
Wei Nie ◽  
Yan-Hui Liu

Abstract A compact coplanar waveguide (CPW)-fed ultra-wideband (UWB) monopole antenna using embedded E-shaped structure with wireless local area network (WLAN) band-rejection is presented. The introduction of this E-shaped structure working as the radiator can enhance the impedance bandwidth of the UWB antenna without increasing the overall size. For preventing the interference from WLAN system, a pair of L-shaped stubs are connected to the ground of UWB antenna to create the rejected band. The center frequency of this rejected band is about 5.5 GHz with the rejection range of 5.2~5.8 GHz. Good agreement can be observed between the simulated and measured results.


2016 ◽  
Vol 78 (6-5) ◽  
Author(s):  
Hamizan Abu Bakar ◽  
Mohamad Zoinol Abidin Abd. Aziz ◽  
Badrul Hisham Ahmad ◽  
Azahari Salleh ◽  
Suhana Ghani ◽  
...  

In this paper, a linear and circular polarized antenna with operating frequency at 2.4 GHz for Wireless Local Area Network (WLAN) application is proposed. Firstly, a basic linear polarization antenna (Design A) was designed with rectangular slot at the rectangular patch and air gap between substrate and copper layer with distance of 10 mm. Next, in order to perform circular polarized, the antenna designed is added with optimized dual circular notch at the rectangular slot. This circular polarized antenna is designed with two different polarization types which are right-handed circular polarization (RHCP) with optimized dual circular notch at the patch (Design B) and left-handed circular polarization (LHCP) with optimized dual circular notch at the patch (Design C). The proposed antenna had been designed and simulated by using Computer Simulation Technology (CST) Microwave Studio Suite. The comparison result of simulation and measurement show that the proposed antenna can achieve axial ratio above 3 dB for linear polarized and below 3 dB for circular polarized with return loss less than -10 dB.


2021 ◽  
Vol 9 (17) ◽  
pp. 4-16
Author(s):  
Pablo Lupera Morillo ◽  
Gary Flores ◽  
Amanda Montaluisa

The use of multifunctional devices increases day by day. Mentioned devices, as smart tv, need appropriate and unified antennas which can meet required frequencies. Therefore, in this paper, a Sierpinski carpet microstrip fractal antenna in the second iteration is designed and fabricated for Digital Tv in UHF band and wireless wideband networks. It was verified that that the design of a fractal antenna based on the Sierpinski carpet is possible from a rectangular patch on iteration 0; however, it must be taken into account that the patch design must be carried out at a specific resonance frequency. Simulation is carried out using ADS simulator, and it was verified using a vector network analyzer. The proposed fractal antenna operates in the UHF digital TV range from 470 MHz to 683 MHz and in the 2.45 GHz to 2.4835 GHz range of broadband wireless local area network.


Author(s):  
A. Z. Yonis

<p><span lang="EN-US">IEEE 802.11ac based wireless local area network (WLAN) is emerging WiFi standard at 5 GHz, it is new gigabit-per-second standard providing premium services. IEEE 802.11ac accomplishes its crude speed increment by pushing on three distinct measurements firstly is more channel holding, expanded from a maximum of 80 MHz up to 160 MHz modes. Secondly, the denser modulation, now using 256-QAM, it has the ability to increase the data rates up to 7 Gbps using an 8×8 multiple input multiple output (MIMO). Finally, it provides high resolution for both narrow and medium bandwidth channels. This work presents a study to improve the performance of IEEE 802.11ac based WLAN system.</span></p>


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Author(s):  
Priya Sharma ◽  
Ashutosh Kumar Singh

A compact rectangular slotted antenna fed through coplanar waveguide for rectenna system is proposed in the application of radio frequency (RF) energy harvesting at center frequency of 2.45 GHz in the wireless local area network (WLAN) band. Three unequal widths of rectangular slots with equal distance have been created step by step to maximize the peak gain to 3.6 dB of the antenna. Radiation plot of the proposed antenna has been depicted to be omnidirectional for RF energy harvesting with maximum radiation efficiency characteristics. The dimension of the antenna is reduced up to 28 × 17 mm2 with better reflection coefficient of -34.6dB.


Sign in / Sign up

Export Citation Format

Share Document