Design of Spiral Square Patch Antenna for Wireless Communications

Author(s):  
Ketavath Kumar Naik

The kapton polyimide material is considered to design conformal antenna with spiral square for radio frequency identification (RFID) and wireless local area network (WLAN) applications. In this chapter, the analysis and investigation has been carried out with spiral square techniques using coplanar waveguide (CPW) feed. The proposed antenna operates at 5.8 GHz with impedance bandwidth of 170 MHz (5.73 - 5.9 GHz) with return loss -25.6 dB and gain is 2.4 dBi. The proposed antenna has considered with different bending angles for investigating the conformal characteristics due to flexibility of the material. These results are presented for omni-directional radiation patterns.

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7002
Author(s):  
Zhendong Ding ◽  
Hao Wang ◽  
Shifei Tao ◽  
Dan Zhang ◽  
Chunyu Ma ◽  
...  

This paper presents a novel broadband monopole antenna that was equipped with a bottom semicircle ground structure, a parasitic patch, a T-shaped slot, s transmission line, a parasitic strip, heart-shaped slices and a coplanar waveguide (CPW). The simulation results revealed that the proposed design had a relatively high return loss, a wide bandwidth and high efficiency. A prototype of the proposed antenna with an overall size of 0.94 λ0 × 0.94 λ0 × 0.02 λ0 (λ0 is the free-space wavelength) was fabricated and measured. The measurement results showed that the prototype had a bandwidth of 4.02 GHz (4.69–8.71 GHz) and a relative bandwidth of 60%. Besides, the maximum gain was 3.31 dBi and the maximum efficiency was 91.1% in the range of 5 to 8.5 GHz. Furthermore, it was found that the prototype almost achieved omnidirectional radiation. Its operating frequency band covered those of industrial scientific medical (ISM) (5.725–5.850 GHz), the radio frequency identification (RFID) (5.8 GHz) and the wireless local area network (WLAN) (5.15–5.25 GHz and 5.725–5.825 GHz).


2014 ◽  
Vol 8 (2) ◽  
pp. 277-281 ◽  
Author(s):  
Tang Yang ◽  
Gao Wen ◽  
Gao Jinsong ◽  
Feng Xiaoguo

In this paper a novel compact multi-band printed coplanar waveguide (CPW)-feed antenna for wireless local area network (WLAN)/WiMAX/RFID applications is proposed. The proposed antenna is composed of a multi-triangular structure as metal ground plane and the radiation element with four different branches, both of the structures are printed on the same side of a substrate and the antenna is fed by a CPW. By carefully tuning the locations and the sizes of these four branches, the antenna can yield three different resonating frequencies to cover the desired bands for WLAN/WiMAX/RFID applications. The simulated and measured results demonstrate that the proposed antenna has the impedance bandwidth (for return loss less than −10 dB) of 700 MHz (2.2−2.9 GHz), 540 MHz (3.16–3.7 GHz), and 850 MHz (5.05–5.9 GHz), respectively, which can cover the WLAN 2.4/5.8 GHz bands, the WiMAX 2.5/3.5 GHz bands, and the RFID 2.45/5.8 GHz bands.


2017 ◽  
Vol 9 (8) ◽  
pp. 1757-1762
Author(s):  
Geetanjali Singla ◽  
Rajesh Khanna

In this paper, a novel design of compact Coplanar Waveguide-fed planar monopole antenna with enhanced bandwidth and multiband characteristics has been proposed. Two rectangular rings have been incorporated in a rectangular patch to obtain multiband operation for Wireless Local Area Network (WLAN) (2.4/5.2/5.8 GHz) and Worldwide Interoperability for Microwave Access (WiMAX) (2.3/2.5/5.5 GHz) bands. A parasitic strip and meandering along with double-ringed structure have been used to achieve enhanced impedance bandwidth in WLAN (from 2.26 to 3.03 GHz) and WiMAX (from 4.48 to 6.85 GHz) bands. The parametric analysis is carried out to study effect of varying dimensions on antenna performance. The proposed antenna is optimized and prototype is designed and fabricated. Simulated and measured radiation patterns in elevation and azimuthal planes are also observed. The antenna shows significant gain of 7.33 dBi at 6.54 GHz frequency.


2018 ◽  
Vol 7 (5) ◽  
pp. 26-30
Author(s):  
M. Harbadji ◽  
A. Boufrioua ◽  
T. A. Denidni

This paper presents a novel compact coplanar waveguide (CPW) monopole fractal-shaped antenna using fractal patch composed of hexagons with defected ground plane. Inclusion of a pair of S-shaped slots on the ground plane is used to  extend the antenna impedance bandwidth and to provide multiband operation. The antenna has a compact size of 35×35×1.27 mm3 which is compact. The antenna is designed, fabricated and measured. Good performances in terms of return loss, gain and radiation pattern are obtained in the  operating bands, which makes the proposed antenna a good  candidate for multiband wireless systems. The obtained results show that the antenna operates at Bluetooth,Worldwide Interoperability for Microwave Access (WiMAX), and Wireless Local Area Network (WLAN).


2016 ◽  
Vol 9 (5) ◽  
pp. 1123-1129 ◽  
Author(s):  
Wang Ren ◽  
Shu-Wei Hu ◽  
Chen Jiang

In this paper, an asymmetric coplanar strip (ACS)-fed quad-band monopole antenna for the global positioning system (GPS), wireless local area network (WLAN), and worldwide interoperability for microwave access (WiMAX) applications is proposed. It is composed of an F-shaped monopole and a partial ground plane, which are both printed on one side of a low-cost FR4 substrate with a compact volume of 40 × 20 × 1.6 mm3. By cutting an open-ended Γ-shaped slot into the F-shaped monopole, four distinct resonant modes are successfully generated. The design process, especially the geometrical configuration of the critical Γ-shaped slot is studied in detail. The proposed antenna has been fabricated and experimental results show that the −10 dB impedance bandwidth can fully cover the 1.575-GHz GPS (1.57–1.59 GHz), 2.4/5.2/5.8-GHz WLAN (2.4–2.485, 5.15–5.35, and 5.725–5.825 GHz), and 2.5/3.5/5.5-GHz WiMAX (2.50–2.69, 3.30–3.70, and 5.25–5.85 GHz) applications with nearly omni-directional radiation patterns and satisfactory gains.


Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 325-332 ◽  
Author(s):  
Han Xu ◽  
Kai-Da Xu ◽  
Wei Nie ◽  
Yan-Hui Liu

Abstract A compact coplanar waveguide (CPW)-fed ultra-wideband (UWB) monopole antenna using embedded E-shaped structure with wireless local area network (WLAN) band-rejection is presented. The introduction of this E-shaped structure working as the radiator can enhance the impedance bandwidth of the UWB antenna without increasing the overall size. For preventing the interference from WLAN system, a pair of L-shaped stubs are connected to the ground of UWB antenna to create the rejected band. The center frequency of this rejected band is about 5.5 GHz with the rejection range of 5.2~5.8 GHz. Good agreement can be observed between the simulated and measured results.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012004
Author(s):  
Noraini Azmi ◽  
Latifah Munirah Kamarudin ◽  
Latifah Mohamed ◽  
Ammar Zakaria ◽  
Mohd Hafiz Fazalul Rahiman ◽  
...  

Abstract Radio Frequency Identification (RFID) enables a large number of object monitoring since semi/passive tags are independent of batteries. In our previous work, the possibility of using different wireless technologies such as Wireless Sensor Network (WSN), Wireless Local Area Network (WLAN) and Radio Frequency Identification (RFID) to determine the moisture content in rice was investigated. Finding from our previous work suggest that RFID can be used to determine the moisture content of rice. While numerous research have been conducted for moisture content of grain, however, to author’s knowledge, there is only a few studies conducted on the localization of grain hostpot. Therefore, this study aims to investigate if the passive RFID array can be used to localize the location of the wet spot of grain. Prior, the experiment, a suitable setting for the RFID system were determined. In addition, a simple test was conducted to select a suitable operating frequency. From the investigation, the result indicates that only frequency channels 865, 866, 867, 868 and 869 MHz can detect all 30 tags. Meanwhile, frequency channel in the range 902 to 928 MHz detects 26 to 29 unique tags. Hence, 868 MHz was selected as the operating frequency throughout the experiment. The findings indicate that the RSSI value measured by the RFID reader decreased as the moisture of the sample increased when the tags were blocked by the sample placed at the designated location during the test.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Author(s):  
Priya Sharma ◽  
Ashutosh Kumar Singh

A compact rectangular slotted antenna fed through coplanar waveguide for rectenna system is proposed in the application of radio frequency (RF) energy harvesting at center frequency of 2.45 GHz in the wireless local area network (WLAN) band. Three unequal widths of rectangular slots with equal distance have been created step by step to maximize the peak gain to 3.6 dB of the antenna. Radiation plot of the proposed antenna has been depicted to be omnidirectional for RF energy harvesting with maximum radiation efficiency characteristics. The dimension of the antenna is reduced up to 28 × 17 mm2 with better reflection coefficient of -34.6dB.


2019 ◽  
Vol 11 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Priyanka Garg ◽  
Priyanka Jain

AbstractIn this paper, a compact, low-profile, coplanar waveguide-fed metamaterial inspired dual-band microstrip antenna is presented for Wireless Local Area Network (WLAN) application. To achieve the goal a triangular split ring resonator is used along with an open-ended stub. The proposed antenna has a compact size of 20 × 24 mm2 fabricated on an FR-4 epoxy substrate with dielectric constant (εr) 4.4. The antenna provides two distinct bands I from 2.40 to 2.48 GHz and II from 4.7 to 6.04 GHz with reflection coefficient better than −10 dB, covering the entire WLAN (2.4/5.2/5.8 GHz) band spectrum. The performance of the proposed metamaterial inspired antenna is also studied in terms of the radiation pattern, efficiency, and the realized gain. A comparative study is also presented to show the performance of the proposed metamaterial inspired antenna with respect to other conventional antenna structures in terms of overall size, bandwidth, gain, and reflection coefficient. Finally, the antenna is fabricated and tested. The simulated results show good agreement with the measured results.


Sign in / Sign up

Export Citation Format

Share Document