A microstrip antenna with reduced in-band and out-of-band radar cross-section

2018 ◽  
Vol 11 (2) ◽  
pp. 199-205
Author(s):  
Jiakai Zhang ◽  
Jiachen Xu ◽  
Yan Qu ◽  
Jun Ding ◽  
Chenjiang Guo

This paper proposes a microstrip antenna with reduced in-band and out-of-band radar cross-section (RCS) by subtracting the area of weak scattered current on the ground plane. Fourteen square slots were subtracted from the ground plane, reducing in-band and out-of-band RCS while maintaining radiation performance. Modified and reference antenna surface current distributions were simulated and analyzed in radiating and scattering modes. Two antenna prototypes were fabricated and measured to verify the simulation. The proposed antenna RCS was reduced compared with the reference antenna in the frequency range 1–4.4 GHz, including in-band and out-of-band frequency bands. Maximum in-band and out-of-band RCS reduction was 16.3 dBsm at the working frequency, and 19.3 dBsm at 3.4 GHz, respectively

2019 ◽  
Vol 11 (4) ◽  
pp. 341-350 ◽  
Author(s):  
Zhang Jiakai ◽  
Zheng Qi ◽  
Li Haixiong ◽  
Ding Jun ◽  
Guo Chenjiang

AbstractThis paper proposes a new radar cross section (RCS) reduced microstrip antenna incorporating 475 square slots on the patch. The proposed antenna achieves wideband RCS reduction with radiation performance sustained. The modified and reference antenna are simulated and analyzed in radiating and scattering mode, respectively. Prototypes of two antennas are fabricated and measured. Compared with the reference antenna, the simulated result shows the modified antenna RCS reduced in the frequency range 1.1–2.6 GHz, which contains the in-band and out-of-band frequency band simultaneously. And the maximum RCS reduction is 7.6dB at the frequency of 1.19GHz. Besides, the modified antenna can achieve the antenna RCS reduction in the case of oblique incidence. The prototypes of two antennas are fabricated and measured, and the accuracy of the simulation is proved by the measured result. Due to its advantages of simplicity, wideband RCS reduced, broad-angle RCS reduced, the method in this paper is suitable for wideband antenna RCS reduction in space-limited environment.


Author(s):  
S. K. Vyshnavi Das ◽  
Avinash Singh ◽  
Arti A. Gurap ◽  
Hema Singh

Abstract To design a low radar cross section (RCS) antenna, the major concern is not only to reduce scattering, but also to maintain its radiation parameters, viz. gain, voltage standing wave ratio (VSWR), etc. This paper presents a simple configuration of low RCS microstrip patch array with a periodic structure-based superstrate. The ground of the array is designed as reduced ground plane with high impedance surface elements, viz. rectangular patch and Jerusalem cross. The configuration of superstrate consists of multilayered, viz., two-layered and three-layered structures having partially absorbing and reflecting surfaces. In both the proposed configurations, the array gain of 12.5 dB is maintained with reduced structural RCS over the entire in-band frequency range. The reflection coefficient (~ −20 dB) and VSWR (~ 1.1) of the array are maintained. It is shown that the proposed superstrate-based patch array design has significantly reduced in-band RCS (−18 dBsm) at its resonant frequency.


2018 ◽  
Vol 10 (9) ◽  
pp. 1042-1047 ◽  
Author(s):  
Jiakai Zhang ◽  
Haixiong Li ◽  
Qi Zheng ◽  
Jun Ding ◽  
Chenjiang Guo

AbstractIn this study, a new microstrip patch antenna with wideband radar cross-section (RCS) reduction is presented. The RCS of the proposed antenna was reduced by subtracting the current-direction slots of the patch, with the radiation performance sustained not only for the current-direction subtraction, but also for the no modification in the ground plane. Modified and reference antenna were fabricated and measured. The simulation and measurement results showed that the modified antenna reduced the in-band and out-band RCS simultaneously with no detriment to the radiation performance. In the frequency band from 3.9 to 8.1 GHz, the RCS of the modified antenna was reduced in the whole band compared with the RCS of the reference antenna. The maximum RCS reduction was 7 dB at a frequency of 6.7 GHz.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
W. Jiang ◽  
T. Hong ◽  
S. X. Gong

Based on the study of the radiation and scattering of the circularly polarized (CP) antenna, a novel radar cross-section (RCS) reduction technique is proposed for CP antenna in this paper. Quasi-fractal slots are applied in the design of the antenna ground plane to reduce the RCS of the CP antenna. Both prototype antenna and array are designed, and their time-, frequency-, and space-domain characteristics are studied to authenticate the proposed technique. The simulated and measured results show that the RCS of the prototype antenna and array is reduced up to 7.85 dB and 6.95 dB in the band of 1 GHz–10 GHz. The proposed technique serves a candidate in the design of low RCS CP antennas and arrays.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 11
Author(s):  
Sanjeev Kumar ◽  
Ravi Kumar ◽  
Rajesh Kumar Vishwakarma

A microstrip antenna with a circular disc design and modified ground is proposed in this paper. Circular shapes of different size have been slotted out from the radiating patch for achieving extended ultra wideband (UWB) with GSM/Bluetooth bands with maximum bandwidth of 17.7 GHz (0.88-18.6 GHz). Further, characteristic of dual notch band is achieved, when a combination of T and L-shaped slots are etched into the circular disc and ground plane respectively. Change in length of slots is controlling the notch band characteristics. The proposed antenna has rejection bandwidth of 1.3-2.2 GHz (LTE band), 3.2-3.9 GHz (WiMAX band) and 5.2-6.1 GHz (WLAN band) respectively. It covers the frequency range of 0.88-18.5 GHz with the VSWR of less than 2. Also, an equivalent parallel resonant circuit has been demonstrated for band notched frequencies of the designed antenna. The gain achieved by the proposed antenna is 6.27 dBi. This antenna has been designed, investigated and fabricated for GSM, Bluetooth, UWB, X and Ku band applications. The stable gain including H & E-plane radiation pattern with good directivity and omnidirectional behavior is achieved by the proposed antenna. Measured bandwidths are 0.5 GHz, 0.8 GHz, 1.1 GHz and 11.7 GHz respectively. 


2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
Mohammad Asif Zaman ◽  
Md. Abdul Matin

A physical optics based method is presented for calculation of monostatic Radar Cross-Section (RCS) of a shell-shaped projectile. The projectile is modeled using differential geometry. The paper presents a detailed analysis procedure for RCS formulation using physical optics (PO) method. The shortcomings of the PO method in predicting accurate surface current density near the shadow boundaries are highlighted. A Fourier transform-based filtering method is proposed to remove the discontinuities in the approximated surface current density. The modified current density is used to formulate the scattered field and RCS. Numerical results are presented comparing the proposed method with conventional PO method. The results are also compared with published results of similar objects and found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document