Managing Cool-Season Weeds in Sugarbeet Grown for Biofuel in the Southeastern United States

2018 ◽  
Vol 32 (4) ◽  
pp. 385-391 ◽  
Author(s):  
W. Carroll Johnson ◽  
Theodore M. Webster ◽  
Timothy L. Grey ◽  
Xuelin Luo

AbstractSugarbeet, grown for biofuel, is being considered as an alternate cool-season crop in the southeastern U.S. coastal plain. Typically, the crop would be seeded in the autumn, then grow through the winter and be harvested the following spring. Labels for herbicides registered for use on sugarbeet grown in the traditional sugarbeet production regions do not list any of the cool-season weeds common in the southeastern United States. Field trials were initiated near Ty Ty, GA, to evaluate all possible combinations of ethofumesate applied PRE, phenmedipham+desmedipham applied POST, clopyralid POST, and triflusulfuron POST for cool-season weed control in sugarbeet. Phenmedipham+desmedipham alone and in combination with clopyralid and/or triflusulfuron effectively controlled cutleaf eveningprimrose, lesser swinecress, henbit, and corn spurry when applied to seedling weeds. Ethofumesate PRE alone was not as effective in controlling cool-season weeds compared to treatments containing phenmedipham+desmedipham POST. However, ethofumesate PRE applied sequentially with phenmedipham+desmedipham POST improved weed control consistency. Clopyralid and/or triflusulfuron alone did not adequately control cutleaf eveningprimrose. Triflusulfuron alone effectively controlled wild radish. In the 2013–2014 and 2014–2015 seasons, December-applied POST herbicides did not injure sugarbeet. However, in the 2015–2016 season POST herbicides were applied in late October. On the day of treatment, the maximum temperature was 25.4 C, which exceeded the established upper temperature limit of 22 C for safe application of phenmedipham+desmedipham, and sugarbeet plants were severely injured. In the southeastern United States, temperatures frequently exceed 22 C in early autumn, which may limit phenmedipham+desmedipham use for controlling troublesome cool-season weeds of sugarbeet in the region. Weed control options need to be expanded to compensate for this limitation.

2018 ◽  
Vol 32 (6) ◽  
pp. 726-732
Author(s):  
W. Carroll Johnson ◽  
Theodore M. Webster ◽  
Timothy L. Grey ◽  
Xuelin Luo

AbstractSugarbeet, grown for biofuel, is being considered as an alternate cool-season crop in the southeastern United States. Previous research identified ethofumesate PRE and phenmedipham + desmedipham POST as herbicides that controlled troublesome cool-season weeds in the region, specifically cutleaf evening-primrose. Research trials were conducted from 2014 through 2016 to evaluate an integrated system of sweep cultivation and reduced rates of ethofumesate PRE and/or phenmedipham+desmedipham POST for weed control in sugarbeet grown for biofuel. There were no interactions between the main effects of cultivation and herbicides for control of cutleaf evening-primrose and other cool-season species in two out of three years. Cultivation improved control of cool-season weeds, but the effect was largely independent of control provided by herbicides. Of the herbicide combinations evaluated, the best overall cool-season weed control was from systems that included either a 1/2X or 1X rate of phenmedipham+desmedipham POST. Either rate of ethofumesate PRE was less effective than phenmedipham+desmedipham POST. Despite improved cool-season weed control, sugarbeet yield was not affected by cultivation each year of the study. Sugarbeet yields were greater when treated with any herbicide combination that included either a 1/2X or 1X rate of phenmedipham+desmedipham POST compared with either rate of ethofumesate PRE alone or the nontreated control. These results indicate that cultivation has a very limited role in sugarbeet grown for biofuel. The premise of effective weed control based on an integration of cultivation and reduced herbicide rates does not appear to be viable for sugarbeet grown for biofuel.


2019 ◽  
Vol 12 (4) ◽  
pp. 229-235
Author(s):  
Richard Cristan ◽  
Patrick J. Minogue ◽  
Stephen F. Enloe ◽  
Brent Sellers ◽  
Anna Osiecka

AbstractHen’s eyes (Ardisia crenata Sims) is a shade-tolerant invasive shrub displacing native understory in forests of the Coastal Plain of the southeastern United States. Few studies have explored herbicide effectiveness on A. crenata, with foliar applications of triclopyr amine or triclopyr ester typically referenced as the standard treatments. This study evaluated efficacy of eight foliar herbicide treatments and a nontreated check at three locations at 12 mo after the first treatment (12MAT1) and 12 mo after the second treatment (12MAT2) on established (greater than 8-cm high) and seedling (less than 8-cm high) A. crenata. Treatments were four triclopyr formulations: amine, ester, choline, and acid (all at 4.04 kg ae ha−1); imazamox (1.12 and 2.24 kg ae ha−1); flumioxazin (0.43 kg ai ha−1); and triclopyr amine plus flumioxazin (4.04 + 0.43 kg ae ha−1). At 12MAT1, triclopyr ester, the high rate of imazamox, and triclopyr acid resulted in greater control of established A. crenata than any other herbicide (68%, 66%, and 64%, respectively). At 12MAT2, all herbicides except flumioxazin resulted in some control of A. crenata. Triclopyr ester, triclopyr acid, and the high rate of imazamox provided 95%, 93%, and 92% control, respectively. Triclopyr choline did not perform as well as the acid or ester formulations, and the tank mix of flumioxazin and triclopyr amine did not improve control over triclopyr amine alone. This study identified triclopyr acid and imazamox (2.24 kg ae ha−1) as new options for A. crenata control and indicated variation in the performance among the four triclopyr formulations.


2010 ◽  
Vol 24 (4) ◽  
pp. 504-509 ◽  
Author(s):  
Glenn Wehtje ◽  
Charles H. Gilliam ◽  
Stephen C. Marble

Both prodiamine and flumioxazin are used in the nursery production and landscape maintenance industries in the southeastern United States for preemergence weed control. Research was conducted to determine whether a tank mixture of these two herbicides would be more effective than either component applied alone. Prodiamine alone, flumioxazin alone, and a 72 : 28 (by weight) prodiamine–flumioxazin mixture were each applied at a series of rates to containers filled with a pine bark–sand substrate that is typical for nursery production in the southeastern United States. Our intent was to have a rate range that hopefully extended from ineffective to lethal for each treatment series. Subsequent to treatment, containers were overseeded with either large crabgrass, spotted spurge, or eclipta. Percent control was determined by comparing treated weed foliage fresh weight to that of the appropriate nontreated control at 6 and 12 wk after application. ANOVA followed by nonlinear regression was used to evaluate the interaction of prodiamine and flumioxazin when combined and to determine the rate of each treatment series required for 95% control (if applicable) for each of the three weed species. Results varied with weed species. The mixture was synergistic and more cost effective than either of the components applied alone in controlling spotted spurge. With respect to large crabgrass control, the mixture was additive and slightly more cost effective than the components. Eclipta could only be controlled with flumioxazin, and this control was antagonized by the addition of prodiamine.


2014 ◽  
Vol 50 (10) ◽  
pp. 8265-8280 ◽  
Author(s):  
Michael P. Griffin ◽  
Timothy J. Callahan ◽  
Vijay M. Vulava ◽  
Thomas M. Williams

2019 ◽  
Vol 20 (1) ◽  
pp. 67-69
Author(s):  
Frances B. Browne ◽  
Phillip M. Brannen ◽  
Harald Scherm ◽  
Marin T. Brewer ◽  
Susan B. Wilde ◽  
...  

Orange cane blotch affects commercial blackberry production in the southeastern United States, mainly in the Coastal Plain region. The causal agent is a slow-growing parasitic alga, Cephaleuros virescens, which has a wide host range. Disease development is linked to the biennial growth pattern of blackberry, whereby symptoms appear in the early fall and algal lesions expand throughout the winter, spring, and early summer of the following year. Preliminary phylogenetic analysis of 18S rDNA sequences suggests that blackberry isolates from different geographical locations cluster together and are genetically similar to each other and yet differ from isolates of C. virescens obtained from commercial blueberry.


Ecology ◽  
1977 ◽  
Vol 58 (5) ◽  
pp. 979-992 ◽  
Author(s):  
Charels T. Garten ◽  
John B. Gentry ◽  
Rebecca R. Sharitz

Sign in / Sign up

Export Citation Format

Share Document