scholarly journals Combining Mass Spectrometry with Paternò–Büchi Reaction to Determine Double-Bond Positions in Lipids at the Single-Cell Level

2020 ◽  
Vol 92 (16) ◽  
pp. 11380-11387 ◽  
Author(s):  
Yanlin Zhu ◽  
Wenhua Wang ◽  
Zhibo Yang
2019 ◽  
Vol 10 (47) ◽  
pp. 10958-10962 ◽  
Author(s):  
Jing Han ◽  
Xi Huang ◽  
Huihui Liu ◽  
Jiyun Wang ◽  
Caiqiao Xiong ◽  
...  

A single-cell MS approach for multiplexed glycan detection to investigate the relationship between drug resistance and glycans at a single-cell level and quantify multiple glycans, overcoming the limit of low ionization efficiency of glycans.


2021 ◽  
Author(s):  
Hsiung-Lin Tu ◽  
Sofani Gebreyesus ◽  
Asad Ali Siyal ◽  
Reta Birhanu Kitata ◽  
Eric Sheng-Wen Chen ◽  
...  

Abstract Single cell proteomics provides the ultimate resolution to reveal cellular phenotypic heterogeneity and functional network underlying biological processes. Here, we present an ultra-streamlined workflow combining an integrated proteomic chip (iProChip) and data-independent-acquisition (DIA) mass spectrometry for sensitive microproteomics analysis down to single cell level. The iProChip offers multiplexed and automated all-in-one station from cell isolation/counting/imaging to complete proteomic processing within a single device. By mapping to project-specific spectra libraries, the iProChip-DIA enables profiling of 1160 protein groups from triplicate analysis of a single mammalian cell. Furthermore, the applicability of iProChip-DIA was demonstrated using both adherent and non-adherent malignant cells, which reveals 5 orders of proteome coverage, highly consistent ~100-fold protein quantification (1-100 cells) and high reproducibility with low missing values (<16%). With the demonstrated all-in-one cell characterization, ultrahigh sensitivity, robustness, and versatility to add other functionalities, the iProChip-DIA is anticipated to offer general utility to realize advanced proteomics applications at single cell level.


2021 ◽  
Author(s):  
Hsiung-Lin Tu ◽  
Sofani Gebreyesus ◽  
Asad Ali Siyal ◽  
Reta Birhanu Kitata ◽  
Eric Sheng-Wen Chen ◽  
...  

Abstract Single cell proteomics provides the ultimate resolution to reveal cellular phenotypic heterogeneity and functional network underlying biological processes. Here, we present an ultra-streamlined workflow combining an integrated proteomic chip (iProChip) and data-independent-acquisition (DIA) mass spectrometry for sensitive microproteomics analysis down to single cell level. The iProChip offers multiplexed and automated all-in-one station from cell isolation/counting/imaging to complete proteomic processing within a single device. By mapping to project-specific spectra libraries, the iProChip-DIA enables profiling of 1160 protein groups from triplicate analysis of a single mammalian cell. Furthermore, the applicability of iProChip-DIA was demonstrated using both adherent and non-adherent malignant cells, which reveals 5 orders of proteome coverage, highly consistent ~100-fold protein quantification (1-100 cells) and high reproducibility with low missing values (<16%). With the demonstrated all-in-one cell characterization, ultrahigh sensitivity, robustness, and versatility to add other functionalities, the iProChip-DIA is anticipated to offer general utility to realize advanced proteomics applications at single cell level.


2019 ◽  
Vol 91 (5) ◽  
pp. 3667-3674 ◽  
Author(s):  
Ruihua Wang ◽  
Hansen Zhao ◽  
Xiaochao Zhang ◽  
Xu Zhao ◽  
Zhe Song ◽  
...  

2020 ◽  
Vol 92 (3) ◽  
pp. 2690-2696 ◽  
Author(s):  
Zhuyin Fang ◽  
Ruihua Wang ◽  
Hansen Zhao ◽  
Huan Yao ◽  
Jin Ouyang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document