Global Profiling and Novel Structure Discovery Using Multiple Neutral Loss/Precursor Ion Scanning Combined with Substructure Recognition and Statistical Analysis (MNPSS): Characterization of Terpene-Conjugated Curcuminoids in Curcuma longa as a Case Study

2015 ◽  
Vol 88 (1) ◽  
pp. 703-710 ◽  
Author(s):  
Xue Qiao ◽  
Xiong-hao Lin ◽  
Shuai Ji ◽  
Zheng-xiang Zhang ◽  
Tao Bo ◽  
...  
2021 ◽  
Vol 11 (24) ◽  
pp. 11859
Author(s):  
Cristina Fornacelli ◽  
Vanessa Volpi ◽  
Elisabetta Ponta ◽  
Luisa Russo ◽  
Arianna Briano ◽  
...  

The characterization of archaeological ceramics according to their chemical composition provides essential information about the production and distribution of specific pottery wares. If a correlation between compositional patterns and local production centers is assumed, pottery manufacturing and trade and, more generally, economic, political, as well as cultural relations between communities and regions can be investigated. In the present paper, the combined application of portable XRF and statistical analysis to the investigation of a large repertory of ceramic fragments allowed us to group the assemblage by identifying geochemical clusters. The results from the chemical and statistical analysis were then compared with reference ceramic samples from the same area, as well as with macroscopic and petrographic observations to confirm, coalesce or sub-divide putative sub-divisions. The study of 141 samples from different sites located within a wide area spanning across the Colline Metallifere and the coast (Monterotondo Marittimo, Roccastrada, Donoratico, and Vetricella) provided new clues for a new interpretive archaeological framework that suggests that there was a well-defined organization of pottery manufacturing and circulation across southern Tuscany during the early medieval period.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


2011 ◽  
Author(s):  
Giorgio Rocco Cavanna ◽  
Ernesto Caselgrandi ◽  
Elisa Corti ◽  
Alessandro Amato del Monte ◽  
Massimo Fervari ◽  
...  

Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


Author(s):  
Sweta Pendyala ◽  
Dave Albert ◽  
Katherine Hawkins ◽  
Michael Tenney

Abstract Resistive gate defects are unusual and difficult to detect with conventional techniques [1] especially on advanced devices manufactured with deep submicron SOI technologies. An advanced localization technique such as Scanning Capacitance Imaging is essential for localizing these defects, which can be followed by DC probing, dC/dV, CV (Capacitance-Voltage) measurements to completely characterize the defect. This paper presents a case study demonstrating this work flow of characterization techniques.


Sign in / Sign up

Export Citation Format

Share Document