scholarly journals Enterococcus NlpC/p60 Peptidoglycan Hydrolase SagA Localizes to Sites of Cell Division and Requires Only a Catalytic Dyad for Protease Activity

Biochemistry ◽  
2020 ◽  
Vol 59 (46) ◽  
pp. 4470-4480
Author(s):  
Juliel Espinosa ◽  
Ti-Yu Lin ◽  
Yadyvic Estrella ◽  
Byungchul Kim ◽  
Henrik Molina ◽  
...  
2020 ◽  
Author(s):  
Transito Garcia-Garcia ◽  
Sandrine Poncet ◽  
Elodie Cuenot ◽  
Thibaut Douché ◽  
Quentin Giai Gianetto ◽  
...  

AbstractCell growth and division require a balance between synthesis and hydrolysis of the peptidoglycan (PG). Inhibition of PG synthesis or uncontrolled PG hydrolysis can be lethal for the cells, making it imperative to control peptidoglycan hydrolase (PGH) activity. The serine/threonine kinases (STKs) of the Hanks family control cell division and envelope homeostasis, but only a few kinase substrates and associated molecular mechanisms have been identified. In this work, we identified CwlA as the first STK-PrkC substrate in the human pathogen Clostridiodes difficile and showed that CwlA is an endopeptidase involved in daughter cell separation. We demonstrated that PrkC-dependent phosphorylation inhibits CwlA export, therefore controlling the hydrolytic activity in the cell wall. High level of CwlA at the cell surface led to cell elongation, whereas low level caused cell separation defects. We thus provided evidence that the STK signaling pathway regulates PGH homeostasis to precisely control PG hydrolysis during cell division.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. e02622-18 ◽  
Author(s):  
Britta E. Rued ◽  
Martín Alcorlo ◽  
Katherine A. Edmonds ◽  
Siseth Martínez-Caballero ◽  
Daniel Straume ◽  
...  

ABSTRACTStreptococcus pneumoniaeis a leading killer of infants and immunocompromised adults and has become increasingly resistant to major antibiotics. Therefore, the development of new antibiotic strategies is desperately needed. Targeting bacterial cell division is one such strategy, specifically by targeting proteins that are essential for the synthesis and breakdown of peptidoglycan. One complex important to this process is FtsEX. FtsEX comprises a cell division-regulating integral membrane protein (FtsX) and a cytoplasmic ATPase (FtsE) that resembles an ATP-binding cassette (ABC) transporter. Here, we present nuclear magnetic resonance (NMR) solution structural and crystallographic models of the large extracellular domain of FtsX, denoted extracellular loop 1 (ECL1). The structure of ECL1 reveals an upper extended β-hairpin and a lower α-helical lobe, each extending from a mixed α-β core. The helical lobe mediates a physical interaction with the peptidoglycan hydrolase PcsB via the coiled-coil domain of PcsB (PscBCC). Characterization ofS. pneumoniaestrain D39-derived strains harboring mutations in the α-helical lobe shows that this subdomain is essential for cell viability and required for proper cell division ofS. pneumoniae.IMPORTANCEFtsX is a ubiquitous bacterial integral membrane protein involved in cell division that regulates the activity of peptidoglycan (PG) hydrolases. FtsX is representative of a large group of ABC3 superfamily proteins that function as “mechanotransmitters,” proteins that relay signals from the inside to the outside of the cell. Here, we present a structural characterization of the large extracellular loop, ECL1, of FtsX from the opportunistic human pathogenS.pneumoniae. We show the molecular nature of the direct interaction between the peptidoglycan hydrolase PcsB and FtsX and demonstrate that this interaction is essential for cell viability. As such, FtsX represents an attractive, conserved target for the development of new classes of antibiotics.


2018 ◽  
Author(s):  
Britta E. Rued ◽  
Martín Alcorlo ◽  
Katherine A. Edmonds ◽  
Siseth Martínez-Caballero ◽  
Daniel Straume ◽  
...  

ABSTRACTStreptococcus pneumoniaeis a leading killer of infants and immunocompromised adults and has become increasingly resistant to major antibiotics. Therefore, the development of new antibiotic strategies is desperately needed. Targeting bacterial cell division is one such strategy, specifically targeting essential proteins for the synthesis and breakdown of peptidoglycan. One complex important to this process is FtsEX. FtsEX comprises an integral membrane protein (FtsX) and cytoplasmic ATPase (FtsE) that resembles an ATP-binding cassette (ABC) transporter. Here, we present NMR solution structural and crystallographic models of the large extracellular domain of FtsX, denoted ECL1. The structure of ECL1 reveals an upper extended β-hairpin and a lower α-helical lobe, each extending from a mixed α-β core. The helical lobe mediates a physical interaction with the peptidoglycan hydrolase PcsB, via the coiled-coil domain of PcsB (PcsB-CC). Characterization ofS. pneumoniaeD39 derived strains harboring mutations in the α-helical lobe shows that this subdomain is essential for cell viability and required for proper cell division ofS. pneumoniae.IMPORTANCEFtsX is a ubiquitous bacterial integral membrane protein involved in cell division that regulates the activity of peptidoglycan (PG) hydrolases. FtsX is representative of a large group of ABC3 superfamily proteins that function as “mechanotransmitters,” proteins that relay signals from inside to the outside of the cell. Here we present a structural characterization of the large extracellular loop (ECL1) of FtsX from the human opportunistic pathogenStreptococcus pneumoniae. We show a direct interaction between the peptidoglycan hydrolase PcsB and FtsX, and demonstrate that this interaction is essential for cell viability. As such, FtsX represents an attractive, conserved target for the development of new classes of antibiotics.


mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Transito Garcia-Garcia ◽  
Sandrine Poncet ◽  
Elodie Cuenot ◽  
Thibaut Douché ◽  
Quentin Giai Gianetto ◽  
...  

ABSTRACT Cell growth and division require a balance between synthesis and hydrolysis of the peptidoglycan (PG). Inhibition of PG synthesis or uncontrolled PG hydrolysis can be lethal for the cells, making it imperative to control peptidoglycan hydrolase (PGH) activity. The synthesis or activity of several key enzymes along the PG biosynthetic pathway is controlled by the Hanks-type serine/threonine kinases (STKs). In Gram-positive bacteria, inactivation of genes encoding STKs is associated with a range of phenotypes, including cell division defects and changes in cell wall metabolism, but only a few kinase substrates and associated mechanisms have been identified. We previously demonstrated that STK-PrkC plays an important role in cell division, cell wall metabolism, and resistance to antimicrobial compounds in the human enteropathogen Clostridioides difficile. In this work, we characterized a PG hydrolase, CwlA, which belongs to the NlpC/P60 family of endopeptidases and hydrolyses cross-linked PG between daughter cells to allow cell separation. We identified CwlA as the first PrkC substrate in C. difficile. We demonstrated that PrkC-dependent phosphorylation inhibits CwlA export, thereby controlling hydrolytic activity in the cell wall. High levels of CwlA at the cell surface led to cell elongation, whereas low levels caused cell separation defects. Thus, we provided evidence that the STK signaling pathway regulates PGH homeostasis to precisely control PG hydrolysis during cell division. IMPORTANCE Bacterial cells are encased in a PG exoskeleton that helps to maintain cell shape and confers physical protection. To allow bacterial growth and cell separation, PG needs to be continuously remodeled by hydrolytic enzymes that cleave PG at critical sites. How these enzymes are regulated remains poorly understood. We identify a new PG hydrolase involved in cell division, CwlA, in the enteropathogen C. difficile. Lack or accumulation of CwlA at the bacterial surface is responsible for a division defect, while its accumulation in the absence of PrkC also increases susceptibility to antimicrobial compounds targeting the cell wall. CwlA is a substrate of the kinase PrkC in C. difficile. PrkC-dependent phosphorylation controls the export of CwlA, modulating its levels and, consequently, its activity in the cell wall. This work provides a novel regulatory mechanism by STK in tightly controlling protein export.


2016 ◽  
Author(s):  
Xiaofei Bai ◽  
Joshua N. Bembenek

AbstractChromosomal segregation and cytokinesis are tightly regulated processes required for successful cell division. The cysteine protease separase cleaves a subunit of the cohesin complex to allow chromosome segregation at anaphase onset. Separase also regulates meiotic cortical granule exocytosis and vesicle trafficking during cytokinesis, both of which involve RAB-11. Separase has non-proteolytic signaling functions in addition to its role in substrate cleavage, and its mechanism in exocytosis is unknown. We sought to determine whether separase regulates RAB-11 vesicle exocytosis through a proteolytic or non-proteolytic mechanism. To address this question, we generated a protease-dead separase, SEP-1PD::GFP, and unexpectedly found that it is dominant negative. Consistent with its role in cohesin cleavage, SEP-1PD::GFP causes chromosome segregation defects. Depletion of the substrate subunit of cohesin rescues this defect, suggesting that SEP-1PD::GFP impairs cohesin cleavage by a substrate trapping mechanism. We investigated whether SEP-1PD::GFP also impairs RAB-11 vesicle trafficking. SEP-1PD::GFP causes a low rate of cytokinesis failure that is synergistically exacerbated by depletion of the core exocytic t-SNARE protein SYX-4. Interestingly, SEP-1PD::GFP causes an accumulation of RAB-11 vesicles at the cleavage furrow site and delayed the exocytosis of cortical granules during anaphase I. Depletion of syx-4 further enhanced RAB-11::mCherry and SEP-1PD::GFP plasma membrane accumulation during cytokinesis. These findings suggest that the protease activity of separase is required for the exocytosis of RAB-11 vesicles during cortical granule exocytosis and mitotic cytokinesis.Author SummaryThe defining event of cell division is the equal distribution of the genetic material to daughter cells. Once sister chromatids align on the metaphase plate, the cell releases the brakes to enter anaphase by activating the protease separase. Separase cleaves the cohesin glue holding duplicated sister chromatids together allowing chromosome segregation. Subsequently, the cell must orchestrate a complex series of anaphase events to equally partition the chromatids and the rest of the cellular components into two distinct daughter cells during cytokinesis. Separase has multiple functions during anaphase to help regulate several key events, including promoting vesicle exocytosis required for cytokinesis. Previous studies have shown that separase can exert control over different events either through substrate cleavage, or by triggering signaling pathways. Here we analyze the cellular functions of separase that are impacted by protease inactive separase. Our results show that separase cleaves cohesin to promote chromosome segregation and also cleaves another independent substrate to promote exocytosis. These findings provide a foundation for understanding the molecular control of separase in exocytosis and indicate that separase has multiple independent substrates that it must cleave to execute various functions. This mechanism may enable the cell to coordinate multiple anaphase events with chromosome segregation.


Author(s):  
L. M. Lewis

The effects of colchicine on extranuclear microtubules associated with the macronucleus of Paramecium bursaria were studied to determine the possible role that these microtubules play in controlling the shape of the macronucleus. In the course of this study, the ultrastructure of the nuclear events of binary fission in control cells was also studied.During interphase in control cells, the micronucleus contains randomly distributed clumps of condensed chromatin and microtubular fragments. Throughout mitosis the nuclear envelope remains intact. During micronuclear prophase, cup-shaped microfilamentous structures appear that are filled with condensing chromatin. Microtubules are also present and are parallel to the division axis.


Author(s):  
Krishan Awtar

Exposure of cells to low sublethal but mitosis-arresting doses of vinblastine sulfate (Velban) results in the initial arrest of cells in mitosis followed by their subsequent return to an “interphase“-like stage. A large number of these cells reform their nuclear membranes and form large multimicronucleated cells, some containing as many as 25 or more micronuclei (1). Formation of large multinucleate cells is also caused by cytochalasin, by causing the fusion of daughter cells at the end of an otherwise .normal cell division (2). By the repetition of this process through subsequent cell divisions, large cells with 6 or more nuclei are formed.


Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


Sign in / Sign up

Export Citation Format

Share Document