scholarly journals Characterization of Collagen Type I and II Blended Hydrogels for Articular Cartilage Tissue Engineering

2016 ◽  
Vol 17 (10) ◽  
pp. 3145-3152 ◽  
Author(s):  
Nelda Vázquez-Portalatı́n ◽  
Claire E. Kilmer ◽  
Alyssa Panitch ◽  
Julie C. Liu
2020 ◽  
Vol 21 (3) ◽  
pp. 1004 ◽  
Author(s):  
Veronica Zubillaga ◽  
Ana Alonso-Varona ◽  
Susana C. M. Fernandes ◽  
Asier M. Salaberria ◽  
Teodoro Palomares

Articular cartilage degeneration is one of the most common causes of pain and disability in middle-aged and older people. Tissue engineering (TE) has shown great therapeutic promise for this condition. The design of cartilage regeneration constructs must take into account the specific characteristics of the cartilaginous matrix, as well as the avascular nature of cartilage and its cells’ peculiar arrangement in isogenic groups. Keeping these factors in mind, we have designed a 3D porous scaffold based on genipin-crosslinked chitosan/chitin nanocrystals for spheroid chondral differentiation of human adipose tissue-derived mesenchymal stem cells (hASCs) induced in hypoxic conditions. First, we demonstrated that, under low oxygen conditions, the chondrospheroids obtained express cartilage-specific markers including collagen type II (COL2A1) and aggrecan, lacking expression of osteogenic differentiation marker collagen type I (COL1A2). These results were associated with an increased expression of hypoxia-inducible factor 1α, which positively directs COL2A1 and aggrecan expression. Finally, we determined the most suitable chondrogenic differentiation pattern when hASC spheroids were seeded in the 3D porous scaffold under hypoxia and obtained a chondral extracellular matrix with a high sulphated glycosaminoglycan content, which is characteristic of articular cartilage. These findings highlight the potential use of such templates in cartilage tissue engineering.


2010 ◽  
Vol 5 (5) ◽  
pp. 055005 ◽  
Author(s):  
Zhongcheng Gong ◽  
Hui Xiong ◽  
Xing Long ◽  
Lili Wei ◽  
Jian Li ◽  
...  

Author(s):  
Hamed Alizadeh Sardroud ◽  
Tasker Wanlin ◽  
Xiongbiao Chen ◽  
B. Frank Eames

Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2369 ◽  
Author(s):  
Marta Anna Szychlinska ◽  
Giovanna Calabrese ◽  
Silvia Ravalli ◽  
Anna Dolcimascolo ◽  
Paola Castrogiovanni ◽  
...  

The management of chondral defects represents a big challenge because of the limited self-healing capacity of cartilage. Many approaches in this field obtained partial satisfactory results. Cartilage tissue engineering, combining innovative scaffolds and stem cells from different sources, emerges as a promising strategy for cartilage regeneration. The aim of this study was to evaluate the capability of a cell-free collagen I-based scaffold to promote cartilaginous repair after orthotopic implantation in vivo. Articular cartilage lesions (ACL) were created at the femoropatellar groove in rat knees and cell free collagen I-based scaffolds (S) were then implanted into right knee defect for the ACL-S group. No scaffold was implanted for the ACL group. At 4-, 8- and 16-weeks post-transplantation, degrees of cartilage repair were evaluated by morphological, histochemical and gene expression analyses. Histological analysis shows the formation of fibrous tissue, at 4-weeks replaced by a tissue resembling the calcified one at 16-weeks in the ACL group. In the ACL-S group, progressive replacement of the scaffold with the newly formed cartilage-like tissue is shown, as confirmed by Alcian Blue staining. Immunohistochemical and quantitative real-time PCR (qRT-PCR) analyses display the expression of typical cartilage markers, such as collagen type I and II (ColI and ColII), Aggrecan and Sox9. The results of this study display that the collagen I-based scaffold is highly biocompatible and able to recruit host cells from the surrounding joint tissues to promote cartilaginous repair of articular defects, suggesting its use as a potential approach for cartilage tissue regeneration.


Author(s):  
Anamarija Rogina ◽  
Maja Pušić ◽  
Lucija Štefan ◽  
Alan Ivković ◽  
Inga Urlić ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Er-Yuan Chuang ◽  
Chih-Wei Chiang ◽  
Pei-Chun Wong ◽  
Chih-Hwa Chen

The treatment of articular cartilage damage is a major task in the medical science of orthopedics. Hydrogels possess the ability to form multifunctional cartilage grafts since they possess polymeric swellability upon immersion in an aqueous phase. Polymeric hydrogels are capable of physiological swelling and greasing, and they possess the mechanical behavior required for use as articular cartilage substitutes. The chondrogenic phenotype of these materials may be enhanced by embedding living cells. Artificial hydrogels fabricated from biologically derived and synthesized polymeric materials are also used as tissue-engineering scaffolds; with their controlled degradation profiles, the release of stimulatory growth factors can be achieved. In order to make use of these hydrogels, cartilage implants were formulated in the laboratory to demonstrate the bionic mechanical behaviors of physiological cartilage. This paper discusses developments concerning the use of polymeric hydrogels for substituting injured cartilage tissue and assisting tissue growth. These gels are designed with consideration of their polymeric classification, mechanical strength, manner of biodegradation, limitations of the payload, cellular interaction, amount of cells in the 3D hydrogel, sustained release for the model drug, and the different approaches for incorporation into adjacent organs. This article also summarizes the different advantages, disadvantages, and the future prospects of hydrogels.


Sign in / Sign up

Export Citation Format

Share Document