Impact of Structural Defects on the Elastic Properties of Two-Dimensional Covalent Organic Frameworks (2D COFs) under Tensile Stress

Author(s):  
Haoyuan Li ◽  
Jean-Luc Brédas
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liming Yin ◽  
Ming Li ◽  
Wenbin Sun ◽  
Juntao Chen ◽  
Bin Liu ◽  
...  

The rock is a kind of geological medium with damages of different degrees including fissures, faults, joints, and other structural defects. Many underground rock engineering projects, such as mining and tunnel excavation, can break the three-dimensional stress balance state of rock mass and make it subject to two-dimensional or even one-dimensional stress, thus inducing stress concentration which leads to rapid failure. In order to investigate the failure law of the rock mass with such defects under two-dimensional stress, based on the similarity theory, we first prepared rocklike specimens with fissures featuring actual mechanical properties and then systematically analyzed the fissure-tip crack propagation and specimen failure law and mechanical mechanism under two-dimensional stress in view of the stress field theory. The results demonstrate that with the increase of load, the microcracks developed and propagated gradually, during which a number of branch paths were generated from the fissure tips of the specimens; the upper and lower cracks were connected first due to the main crack propagation, forming a sliding surface which caused the failure of the specimens, and the strengths of the specimens also fluctuated according to the different combinations of the fissure dip angles and rock bridge dip angles. In view of acoustic emission (AE), we calculated and obtained the spatial positions of stress peaks in each direction at the fissure tips; through comparison and analysis, the angle corresponding to the negative angle peak of the maximum circumferential tensile stress and the maximum radial tensile stress is basically the same as the angle of the main crack propagation direction generated from the preexisting fissure; it can be inferred that the tensile stress is the main stress inducing crack initiation and specimen failure, which is consistent with the physical characteristics of rock (resistant to compression but not tension). This may serve as a guidance for judging the direction along which new cracks are generated in a rock mass with double structural planes.


Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


2017 ◽  
Author(s):  
Austin M. Evans ◽  
Lucas R. Parent ◽  
Nathan C. Flanders ◽  
Ryan P. Bisbey ◽  
Edon Vitaku ◽  
...  

<div> <div> <div> <p>Polymerizing monomers into periodic two-dimensional (2D) networks provides structurally precise, atomically thin macromolecular sheets linked by robust, covalent bonds. These materials exhibit desirable mechanical, optoelectrotronic, and molecular transport properties derived from their designed structure and permanent porosity. 2D covalent organic frameworks (COFs) offer broad monomer scope, but are generally isolated as polycrystalline, insoluble powders with limited processability. Here we overcome this limitation by controlling 2D COF formation using a two- step procedure. In the first step, 2D COF nanoparticle seeds are prepared with approximate diameters of 30 nm. Next, monomers are slowly added to suppress new nucleation while promoting epitaxial growth on the existing seeds to sizes of several microns. The resulting COF nanoparticles are of exceptional and unprecedented quality, isolated as single crystalline materials with micron-scale domain sizes. These findings advance the controlled synthesis of 2D layered COFs and will enable a broad exploration of synthetic 2D polymer structures and properties. </p> </div> </div> </div>


Author(s):  
Shiwei Wang ◽  
Anton Chavez ◽  
Simil Thomas ◽  
Hong Li ◽  
Nathan C. Flanders ◽  
...  

This work reports on the assembly of imine-linked macrocycles that serve as models of two-dimensional covalent organic frameworks (2D COFs). Interlayer interactions play an important role in the formation of 2D COFs, yet the effect of monomer structure on COF formation, crystallinity, and susceptibility to exfoliation are not well understood. For example, monomers with both electron-rich and electron-poor π-electron systems have been proposed to strengthen interlayer inter-actions and improve crystallinity. Here we probe these effects by studying the stacking behavior of imine-linked macrocycles that represent discrete models of 2D COFs. <div><br></div><div>Specifically, macrocycles based on terephthaldehyde (PDA) or 2,5-dimethoxyterephthaldehyde (DMPDA) stack upon cooling molecularly dissolved solutions. Both macrocycles assemble cooperatively with similar ΔHe values of -97 kJ/mol and -101 kJ/mol, respectively, although the DMPDA macrocycle assembly process showed a more straightforward temperature dependence. Circular dichroism spectroscopy performed on macrocycles bearing chiral side chains revealed a helix reversion process for the PDA macrocycles that was not observed for the DMPDA macrocycles. <br></div><div><br></div><div>Given the structural similarity of these monomers, these findings demonstrate that the stacking processes associated with nanotubes derived from these macrocycles, as well as for the corresponding COFs, are complex and susceptible to kinetic traps, casting doubt on the relevance of thermodynamic arguments for improving materials quality. <br></div>


2019 ◽  
Author(s):  
Simil Thomas ◽  
Hong Li ◽  
Raghunath R. Dasari ◽  
Austin Evans ◽  
William Dichtel ◽  
...  

<p>We have considered three two-dimensional (2D) π-conjugated polymer networks (i.e., covalent organic frameworks, COFs) materials based on pyrene, porphyrin, and zinc-porphyrin cores connected <i>via</i> diacetylenic linkers. Their electronic structures, investigated at the density functional theory global-hybrid level, are indicative of valence and conduction bands that have large widths, ranging between 1 and 2 eV. Using a molecular approach to derive the electronic couplings between adjacent core units and the electron-vibration couplings, the three π-conjugated 2D COFs are predicted to have ambipolar charge-transport characteristics with electron and hole mobilities in the range of 65-95 cm<sup>2</sup>V<sup>-1</sup>s<sup>-1</sup>. Such predicted values rank these 2D COFs among the highest-mobility organic semiconductors. In addition, we have synthesized the zinc-porphyrin based 2D COF and carried out structural characterization via powder X-ray diffraction and surface area analysis, which demonstrates the feasability of these electroactive networks.</p>


2021 ◽  
Author(s):  
Austin M. Evans ◽  
Ashutosh Giri ◽  
Vinod K. Sangwan ◽  
Sangni Xun ◽  
Matthew Bartnof ◽  
...  

2017 ◽  
Vol 9 (27) ◽  
pp. 22856-22863 ◽  
Author(s):  
Manman Mu ◽  
Yanwen Wang ◽  
Yutian Qin ◽  
Xilong Yan ◽  
Yang Li ◽  
...  

2017 ◽  
Vol 121 (22) ◽  
pp. 225112
Author(s):  
Hui Xiang ◽  
Bo Xu ◽  
Yidong Xia ◽  
Jiang Yin ◽  
Zhiguo Liu

2017 ◽  
Vol 52 (15) ◽  
pp. 2065-2074 ◽  
Author(s):  
Bo Wang ◽  
Nobuhide Uda ◽  
Kousei Ono ◽  
Hiroto Nagai

In this paper, a combination of experimentation and analysis is used to study the effect of micro in-plane fiber waviness on the compressive properties of unidirectional fabric composites. The experimental part includes a measurement of the micro in-plane fiber waviness in two types of unidirectional fabrics, manufacturing composites with each unidirectional fabric via VaRTM process and tests for establishing the compressive modulus and strengths of the composites. The compressive strengths were confirmed to be affected by the micro in-plane fiber waviness, but the compressive modulus was not. Furthermore, a two-dimensional numerical model is proposed to explain our experimental results. The numerical results indicate that the tensile stress (owing to the micro in-plane fiber waviness) and compressive stress along the weft and warp directions, respectively, of the composite lead to reductions in the compressive strength.


Sign in / Sign up

Export Citation Format

Share Document