Chemoresponsive Shape-Memory Effect of Rhodium–Phosphine Coordination Polymer Networks

2019 ◽  
Vol 31 (15) ◽  
pp. 5402-5407 ◽  
Author(s):  
Pengfei Zhang ◽  
Marc Behl ◽  
Xingzhou Peng ◽  
Maria Balk ◽  
Andreas Lendlein
2021 ◽  
Vol 22 (11) ◽  
pp. 5892
Author(s):  
Axel T. Neffe ◽  
Candy Löwenberg ◽  
Konstanze K. Julich-Gruner ◽  
Marc Behl ◽  
Andreas Lendlein

Shape-memory hydrogels (SMH) are multifunctional, actively-moving polymers of interest in biomedicine. In loosely crosslinked polymer networks, gelatin chains may form triple helices, which can act as temporary net points in SMH, depending on the presence of salts. Here, we show programming and initiation of the shape-memory effect of such networks based on a thermomechanical process compatible with the physiological environment. The SMH were synthesized by reaction of glycidylmethacrylated gelatin with oligo(ethylene glycol) (OEG) α,ω-dithiols of varying crosslinker length and amount. Triple helicalization of gelatin chains is shown directly by wide-angle X-ray scattering and indirectly via the mechanical behavior at different temperatures. The ability to form triple helices increased with the molar mass of the crosslinker. Hydrogels had storage moduli of 0.27–23 kPa and Young’s moduli of 215–360 kPa at 4 °C. The hydrogels were hydrolytically degradable, with full degradation to water-soluble products within one week at 37 °C and pH = 7.4. A thermally-induced shape-memory effect is demonstrated in bending as well as in compression tests, in which shape recovery with excellent shape-recovery rates Rr close to 100% were observed. In the future, the material presented here could be applied, e.g., as self-anchoring devices mechanically resembling the extracellular matrix.


2014 ◽  
Vol 53 (42) ◽  
pp. 16156-16163 ◽  
Author(s):  
Mengjin Fan ◽  
Jialin Liu ◽  
Xiangyuan Li ◽  
Junying Zhang ◽  
Jue Cheng

Author(s):  
Axel T. Neffe ◽  
Candy Löwenberg ◽  
Konstanze K. Julich-Gruner ◽  
Marc Behl ◽  
Andreas Lendlein

Shape-memory hydrogels (SMH) are as multifunctional, actively-moving polymers of interest in biomedicine. In loosely crosslinked polymer networks gelatin chains may form triple helices, which can act as temporary netpoints in SMH, depending on the presence of salts. Here, we show programming and initiation of the shape-memory effect of such networks based on a thermomechanical process compatible with the physiological environment. The SMH were synthesized by reaction of glycidylmethacrylated gelatin with OEG α,ω-dithiols of varying crosslinker length and amount. Triple helicalization of gelatin chains is shown directly by wide-angle X-ray scattering and indirectly via the mechanical behavior at different temperatures. The ability to form triple helices increased with the molar mass of the crosslinker. Hydrogels had storage moduli of 0.27-23 kPa and Young’s moduli of 215-360 kPa at 4 °C. The hydrogels were hydrolytically degradable, with full degradation to water soluble products within one week at 37 °C and pH = 7.4. A thermally-induced shape-memory effect is demonstrated in bending as well as in compression tests, in which shape recovery with excellent shape recovery rates Rr close to 100% were observed. In the future, the material presented here could be applied e.g. as self-anchoring devices mechanically resembling the extracellular matrix.


MRS Advances ◽  
2016 ◽  
Vol 1 (27) ◽  
pp. 1985-1993 ◽  
Author(s):  
Yi Jiang ◽  
Liang Fang ◽  
Karl Kratz ◽  
Andreas Lendlein

ABSTRACTMicrostructured polymeric surfaces capable of a thermally-induced shape-memory effect (SME) can perform on demand changes of surface properties such as wettability or adhesion.In this study, we explored the influence of the applied compression direction during programming, i.e. vertical compression and tilted compression, on the SME of microstructured crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) films comprising arrays of micro-cylinders with a height of 10 µm and different diameters of 10 µm, 25 µm, and 50 µm. The shape recovery of the microstructures during heating was visualized online by optical microscopy, while atomic force microscopy (AFM) was utilized to investigate the temperature-induced shape change of single micro-cylinders. Here, the changes in micro-cylinder height and the characteristic angle θ were followed and analyzed for quantification of the shape-memory performance. Both compression modes resulted in almost flat programmed surfaces as indicated by high shape fixity ratios of Rf ≥ 93±1%. A nearly complete recovery of the micro-cylinders was obtained for all investigated cPEVA samples documented by high shape recovery values of Rr ≥ 97±1%, while the obtained shape change of the micro-cylinders during recovery almost reversely recalled the applied deformation during programming. The presented capability of SMP microstructured substrates to memorize the way of deformation during programming could be a new tool for controlling particular shape changes of microstructures during recovery and in such a way the generated local recovery forces can be adjusted.


2016 ◽  
Vol 37 (23) ◽  
pp. 1897-1903 ◽  
Author(s):  
Pengfei Zhang ◽  
Marc Behl ◽  
Xingzhou Peng ◽  
Muhammad Yasar Razzaq ◽  
Andreas Lendlein

Author(s):  
F. I. Grace

An interest in NiTi alloys with near stoichiometric composition (55 NiTi) has intensified since they were found to exhibit a unique mechanical shape memory effect at the Naval Ordnance Laboratory some twelve years ago (thus refered to as NITINOL alloys). Since then, the microstructural mechanisms associated with the shape memory effect have been investigated and several interesting engineering applications have appeared.The shape memory effect implies that the alloy deformed from an initial shape will spontaneously return to that initial state upon heating. This behavior is reported to be related to a diffusionless shear transformation which takes place between similar but slightly different CsCl type structures.


2003 ◽  
Vol 112 ◽  
pp. 1177-1180 ◽  
Author(s):  
A. Schuster ◽  
H. F. Voggenreiter ◽  
D. C. Dunand ◽  
G. Eggeler

Sign in / Sign up

Export Citation Format

Share Document