Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures

Author(s):  
Rongchao Jin ◽  
Gao Li ◽  
Sachil Sharma ◽  
Yingwei Li ◽  
Xiangsha Du
2014 ◽  
Vol 70 (a1) ◽  
pp. C1211-C1211
Author(s):  
Joseph Ng ◽  
Ronny Hughes ◽  
Michelle Morris ◽  
Leighton Coates ◽  
Matthew Blakeley ◽  
...  

Soluble inorganic pyrophosphatase (IPPase) catalyzes the hydrolysis of inorganic pyrophosphate (PPi) to form orthophosphate (Pi). The action of this enzyme shifts the overall equilibrium in favor of synthesis during a number of ATP-dependent cellular processes such as in the polymerization of nucleic acids, production of coenzymes and proteins and sulfate assimilation pathways. Two Neutron crystallographic (2.10-2.50Å) and five high-resolution X-ray (0.99Å-1.92Å) structures of the archaeal IPPase from Thermococcus thioreducens have been determined under both cryo and room temperatures. The structures determined include the recombinant IPPase bound to Mg+2, Ca+2, Br-, SO2-2 or PO4-2 involving those with non-hydrolyzed and hydrolyzed pyrophosphate complexes. All the crystallographic structures provide snapshots of the active site corresponding to different stages of the hydrolysis of inorganic pyrophosphate. As a result, a structure-based model of IPPase catalysis is devised showing the enzyme's low-energy conformations, hydration states, movements and nucleophile generation within the active site.


2020 ◽  
Author(s):  
Maria Silva-Garcia ◽  
Oguz Bolgi ◽  
Breyan Ross ◽  
Esther Pilla ◽  
Vijayalakshmi Kari ◽  
...  

SummaryDipeptidyl peptidase 9 (DPP9) is a serine protease cleaving N-terminal dipeptides preferentially post-proline with (patho)physiological roles in the immune system and cancer. Only few DPP9 substrates are known. Here we identify an association of human DPP9 with the tumour suppressor BRCA2, a key player in repair of DNA double-strand breaks that promotes the formation of RAD51 filaments. This interaction is triggered by DNA-damage and requires access to the DPP9 active-site. We present crystallographic structures documenting the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in the DPP9 active-site. Mechanistically, DPP9 targets BRCA2 for degradation by the N-degron pathway, and promotes RAD51 foci formation. Both processes are phenocopied by BRCA2 N-terminal truncation mutants, indicating that DPP9 regulates both stability and the cellular stoichiometric interactome of BRCA2. Consistently, DPP9-deprived cells are hypersensitive to DNA-damage. Together, we identify DPP9 as a regulator of BRCA2, providing a possible explanation for DPP9 involvement in cancer development.


2009 ◽  
Vol 1217 ◽  
Author(s):  
Govind Gupta ◽  
Robert Baier ◽  
Wenhua Chen ◽  
Hao Wang ◽  
Theodore E Madey

AbstractHeterogeneous catalysis is a field of major interest in the surface science and development of new supported model catalysts with a narrow size distribution. The possibility to create narrow size distributions is to use the faceted surface structures as self assembled templates on which metal nanoclusters can grow. In the present study, new aspects of adsorbate induced faceting and nanoscale phenomena on adsorbate-covered metallic surfaces are studied on atomically-rough morphologically unstable metallic fcc (Rh) and hcp (Re) surfaces. Formation of oxygen induced faceting of atomically-rough Rh (210) surface has been studied and characterized by means of LEED, STM and AES. The LEED studies confirm the formation of three sided faceted (nanoscale pyramidal structure) Rh(210) surface when the oxygen covered Rh surface annealed to temperature higher than 550K. The facet orientations of the nanopyramid are characterized as two {731} face and a reconstructed (110) face. The excess oxygen overlayer can be removed from pyramidal faceted Rh(210) surface via catalytic reaction at low temperature using CO oxidation or H2 reaction while preserving the pyramidal structure. The average size of the nanopyramids is observed to be dependent on annealing temperature and vary from 12nm to 21nm. The atomically resolved STM images confirm the LEED observations and also revealed that (110) face of nanopyramids exhibits various reconstructions (1×n, n = 2-4) depending on oxygen coverage. Further, oxygen induced nanoscale faceted Re (12-31) surface has been formed which consist of nano-trenches (two sided ridges) with facets in (11-21) and (01-10) direction. These two- sided faceted Re (12-31) surface is used as a template to grow gold nanostructures. Under controlled growth conditions, the gold induced nanostructures are formed on oxygen induced nano-trenched Re (12-31) surface. It is observed that gold grows in the form of islands on the faceted rhenium substrate i.e. at lower coverages (≥0.8ML), it forms 2D islands whereby for higher coverages 3D islands are formed on top of the nano-ridges. The surfaces morphology of the gold covered faceted Re surface changes drastically on annealing, for the temperature >870 K, gold atoms wet the rhenium template while annealing to higher temperature (˜970K) led to the development of a three sided nanopyramids. On further annealing to higher temperatures (>1100K) cause the complete destruction of the faceted structure. LEED and STM studies revealed that the gold induced three sided nanopyramids consists of two faces of original two sided ridges with (11-20), (01-10) orientation and an additional facet in (12-32) direction. The high resolution STM images revealed that the (12-32) facet of the nanopyramid is fully decorated with single atomic zigzag gold nanochain. These faceted surfaces can be potential template for heterogeneous catalysis and development of new supported model catalysts with a narrow size distribution.


2002 ◽  
Vol 100 (18) ◽  
pp. 2935-2940 ◽  
Author(s):  
MAURO BOERO ◽  
MICHELE PARRINELLO ◽  
KIYOYUKI TERAKURA ◽  
HORST WEISS

Author(s):  
Renata Bueno ◽  
Alice Dawson ◽  
William N. Hunter

The enzymes involved in folate metabolism are key drug targets for cell-growth modulation, and accurate crystallographic structures provide templates to be exploited for structure-based ligand design. In this context, three ternary complex structures of human methylenetetrahydrofolate dehydrogenase/cyclohydrolase have been published [Schmidt et al. (2000), Biochemistry, 39, 6325–6335] and potentially represent starting points for the development of new antifolate inhibitors. However, an inspection of the models and the deposited data revealed deficiencies and raised questions about the validity of the structures. A number of inconsistencies relating to the publication were also identified. Additional refinement was carried out with the deposited data, seeking to improve the models and to then validate the complex structures or correct the record. In one case, the inclusion of the inhibitor in the structure was supported and alterations to the model allowed details of enzyme–ligand interactions to be described that had not previously been discussed. For one weak inhibitor, the data suggested that the ligand may adopt two poses in the binding site, both with few interactions with the enzyme. In the third case, that of a potent inhibitor, inconsistencies were noted in the assignment of the chemical structure and there was no evidence to support the inclusion of the ligand in the active site.


2012 ◽  
Vol 40 (3) ◽  
pp. 567-572 ◽  
Author(s):  
Abdussalam Adina-Zada ◽  
Tonya N. Zeczycki ◽  
Martin St. Maurice ◽  
Sarawut Jitrapakdee ◽  
W. Wallace Cleland ◽  
...  

The activity of the biotin-dependent enzyme pyruvate carboxylase from many organisms is highly regulated by the allosteric activator acetyl-CoA. A number of X-ray crystallographic structures of the native pyruvate carboxylase tetramer are now available for the enzyme from Rhizobium etli and Staphylococcus aureus. Although all of these structures show that intersubunit catalysis occurs, in the case of the R. etli enzyme, only two of the four subunits have the allosteric activator bound to them and are optimally configured for catalysis of the overall reaction. However, it is apparent that acetyl-CoA binding does not induce the observed asymmetrical tetramer conformation and it is likely that, under normal reaction conditions, all of the subunits have acetyl-CoA bound to them. Thus the activation of the enzyme by acetyl-CoA involves more subtle structural effects, one of which may be to facilitate the correct positioning of Arg353 and biotin in the biotin carboxylase domain active site, thereby promoting biotin carboxylation and, at the same time, preventing abortive decarboxylation of carboxybiotin. It is also apparent from the crystal structures that there are allosteric interactions induced by acetyl-CoA binding in the pair of subunits not optimally configured for catalysis of the overall reaction.


Nanoscale ◽  
2021 ◽  
Author(s):  
Yurong Ma ◽  
Mengling Zhang ◽  
Zhixiong Deng ◽  
Xiting Wang ◽  
Hui Huang ◽  
...  

Nano-hybrid-enzyme is an ideal catalytic system that integrates various advantages from biocatalysis, nanocatalysis to homogeneous and heterogeneous catalysis. However, great efforts are still needed to fully understand the interactions between...


Sign in / Sign up

Export Citation Format

Share Document