Effects of Wet Flue Gas Desulfurization and Wet Electrostatic Precipitator on Particulate Matter and Sulfur Oxide Emission in Coal-Fired Power Plants

2020 ◽  
Vol 34 (12) ◽  
pp. 16423-16432
Author(s):  
Fuxin Yang ◽  
Hexin Liu ◽  
Peng Feng ◽  
Zhenghong Li ◽  
Houzhang Tan
2018 ◽  
Vol 53 ◽  
pp. 04005 ◽  
Author(s):  
Ding Yang ◽  
Yi Luo ◽  
XingLian Ye ◽  
WeiXiang Chen ◽  
Jun Guo ◽  
...  

SO3 is one of the main precursors of atmospheric PM2.5, and its emission has attracted more and more attention in the industry. This paper briefly analyzes the harm of SO3 and the method of controlled condensation to test SO3. The effect of cooperative removal of SO3 by ultra-low emission technology in some coal-fired power plants has been tested by using the method of controlled condensation. The results show that the cooperative removal of SO3 by ultra-low emission technology in coal-fired power plants is effective. The removal rate of SO3 by low-low temperature electrostatic precipitators and electrostatic-fabric integrated precipitators can be exceeded 80%, while the removal rate of SO3 by wet flue gas desulfurization equipment displays lower than the above two facilities, and the wet electrostatic precipitator shows a better removal effect on SO3. With the use of ultra-low emission technology in coal-fired power plants, the SO3 emission concentration of the tail chimney reaches less than 1 mg / Nm3.


2012 ◽  
Vol 518-523 ◽  
pp. 2576-2579 ◽  
Author(s):  
Zhong Gen Li ◽  
Xin Bin Feng ◽  
Guang Hui Li ◽  
Run Sheng Yin ◽  
Ben Yu

Mercury distribution and stable isotope composition in solid samples of two coal-fired power plants in Guizhou province were determined. Results shown electrostatic precipitator (ESP) has mercury removal efficiency between 29.53% to 58.41%, and wet flue gas desulfurization (WFGD) between 12.29% to 58.60%, mercury removal efficiency of ESP and WFGD mainly depends on the coal properties. Most mercury (70% to 88%) in coal was captured by the combination of ESP+WFGD. Mercury in fly ash and gypsum were much heavier in isotope composition compared to the coal, hints mercury escaped into atmosphere was enriched in lighter mercury isotopes.


2011 ◽  
Vol 11 ◽  
pp. 2469-2479
Author(s):  
Juan Wang ◽  
Wei Xu ◽  
Xiaohao Wang ◽  
Wenhua Wang

The measurement of total mercury in flue gas based on an economical aluminum matrix sorbent was developed in this paper. A sorbent trap consisted of three tubes was employed to capture Hg from flue gas. Hg trapped on sorbent was transferred into solution by acid leaching and then detected by CVAAS. Hg adsorbed on sorbent was recovered completely by leaching process. The 87.7% recovery of Hg in flue gas by tube 1 and tube 2 was obtained on the equipment of coal combustion and sampling in lab. In order to evaluate the ability to recover and accurately quantify Hg0on the sorbent media, the analytical bias test on tube 3 spiked with Hg0was also performed and got the average recovery of 97.1%. Mercury measurements based on this method were conducted for three coal-fired power plants in China. The mercury in coal is distributed into bottom ash, electrostatic precipitator (ESP) ash, wet flue gas desulfurization (WFGD) reactant, and flue gas, and the relative distribution varied depending on factors such as the coal type and the operation conditions of plants. The mercury mass balances of three plants were also calculated which were 91.6%, 77.1%, and 118%, respectively. The reliability of this method was verified by the Ontario Hydro (OH) method either in lab or in field.


2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Ghulam Moeen Uddin ◽  
Syed Muhammad Arafat ◽  
Waqar Muhammad Ashraf ◽  
Muhammad Asim ◽  
Muhammad Mahmood Aslam Bhutta ◽  
...  

Abstract The emissions from coal power plants have serious implication on the environment protection, and there is an increasing effort around the globe to control these emissions by the flue gas cleaning technologies. This research was carried out on the limestone forced oxidation (LSFO) flue gas desulfurization (FGD) system installed at the 2*660 MW supercritical coal-fired power plant. Nine input variables of the FGD system: pH, inlet sulfur dioxide (SO2), inlet temperature, inlet nitrogen oxide (NOx), inlet O2, oxidation air, absorber slurry density, inlet humidity, and inlet dust were used for the development of effective neural network process models for a comprehensive emission analysis constituting outlet SO2, outlet Hg, outlet NOx, and outlet dust emissions from the LSFO FGD system. Monte Carlo experiments were conducted on the artificial neural network process models to investigate the relationships between the input control variables and output variables. Accordingly, optimum operating ranges of all input control variables were recommended. Operating the LSFO FGD system under optimum conditions, nearly 35% and 24% reduction in SO2 emissions are possible at inlet SO2 values of 1500 mg/m3 and 1800 mg/m3, respectively, as compared to general operating conditions. Similarly, nearly 42% and 28% reduction in Hg emissions are possible at inlet SO2 values of 1500 mg/m3 and 1800 mg/m3, respectively, as compared to general operating conditions. The findings are useful for minimizing the emissions from coal power plants and the development of optimum operating strategies for the LSFO FGD system.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4249
Author(s):  
Xuan Yao ◽  
Man Zhang ◽  
Hao Kong ◽  
Junfu Lyu ◽  
Hairui Yang

After the implementation of the ultra-low emissions regulation on the coal-fired power plants in China, the problem of the excessive ammonia-slipping from selective catalytic reduction (SCR) seems to be more severe. This paper analyzes the operating statistics of the coal-fired plants including 300 MW/600 MW/1000-MW units. Statistics data show that the phenomenon of the excessive ammonia-slipping is widespread. The average excessive rate is over 110%, while in the small units the value is even higher. A field test data of nine power plants showed that excessive ammonia-slipping at the outlet of SCR decreased following the flue-gas process. After most ammonia reduced by the dust collector and the wet flue-gas desulfurization (FGD), the ammonia emission at the stack was extremely low. At same time, a method based on probability distribution is proposed in this paper to describe the relationship between the NH3/NOX distribution deviation and the De–NOX efficiency/ammonia-slipping. This paper also did some original work to solve the ammonia-slipping problem. A real-time self-feedback ammonia injection technology using neural network algorithm to predict and moderate the ammonia distribution is proposed to decrease the NH3/NOX deviation and excessive ammonia-slipping. The technology is demonstrated in a 600-MW unit and works successfully. The excessive ammonia-slipping problem is well controlled after the implementation of the technology.


Sign in / Sign up

Export Citation Format

Share Document