Determination of Critical Self-Ignition Temperature of Low-Rank Coal Using a 1 m Wire-Mesh Basket and Extrapolation to Industrial Coal Piles

2017 ◽  
Vol 31 (7) ◽  
pp. 6700-6710 ◽  
Author(s):  
Yongjun Wang ◽  
Xiaoming Zhang ◽  
Yuichi Sugai ◽  
Kyuro Sasaki
2019 ◽  
Vol 6 (9) ◽  
pp. 190374 ◽  
Author(s):  
Yongjun Wang ◽  
Xiaoming Zhang ◽  
Hemeng Zhang ◽  
Kyuro Sasaki

This study investigates the effects of temperature gradient and coal particle size on the critical self-ignition temperature T CSIT of a coal pile packed with low-rank coal using the wire-mesh basket test to estimate T CSIT based on the Frank–Kamenetskii equation. The values of T CSIT , the temperature gradient and the apparent activation energy of different coal pile volumes packed with coal particles of different sizes are measured. The supercriticality or subcriticality of the coal is assessed using a non-dimensional index I HR based on the temperature gradient at the temperature cross-point between coal and ambient temperatures for coal piles with various volumes and particle sizes. The critical value I HRC at the boundary between supercriticality and subcriticality is determined as a function of pile volume. The coal status of supercritical or subcritical can be separated by critical value of I HR as a function of pile volume. Quantitative effects of coal particle size on T CSIT of coal piles are measured for constant pile volume. It can be concluded that a pile packed with smaller coal particles is more likely to undergo spontaneous combustion, while the chemical activation energy is not sensitive to coal particle size. Finally, the effect of coal particle size on T CSIT is represented by the inclusion of an extra term in the equation giving T CSIT for a coal pile.


2021 ◽  
Vol 228 ◽  
pp. 01015
Author(s):  
Yueling Zhang ◽  
Shengyue Ma ◽  
Jing Xiao ◽  
Yajun Tian ◽  
Kechang Xie

Understanding the ignition mechanism of spontaneous combustion is critical for preventing it. In this work, the effects of different test conditions including oxygen concentration, heating rate, oxidation carrier gas flow rate, and sample amount on the ignition temperature were studied with a thermal gravimetric analyzer. Further, the effects of coal properties on the ignition temperature were also investigated using 15 different low-rank coals. A heterogenous ignition model was proposed that small amount of active species is the key material leading to ignition. The heterogenous ignition mechanism well explained the complex effects of test conditions and coal properties on the ignition temperature of low-rank coal. Finally, an empirical formula for predicting the ignition temperature was derived for the rapid assessment of the spontaneous combustion potential.


2019 ◽  
Vol 353 ◽  
pp. 20-26 ◽  
Author(s):  
Yuchu Cai ◽  
Meili Du ◽  
Shuili Wang ◽  
Lei Liu

Fuel ◽  
1995 ◽  
Vol 74 (9) ◽  
pp. 1261-1266 ◽  
Author(s):  
J. Yperman ◽  
D. Franco ◽  
J. Mullens ◽  
L.C. Van Poucke ◽  
G. Gryglewicz ◽  
...  

2017 ◽  
pp. 9-15
Author(s):  
Xianling Dong ◽  
M.I. Saripan ◽  
R. Mahmud ◽  
S. Mashohor ◽  
Aihui Wang

2018 ◽  
Author(s):  
Jayeeta Chakraborty ◽  
◽  
Robert B. Finkelman ◽  
William H. Orem ◽  
Matthew S. Varonka ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 239
Author(s):  
Wei Wang ◽  
Long Liang ◽  
Yaoli Peng ◽  
Maria Holuszko

Micro-Fourier transform infrared (micro-FTIR) spectroscopy was used to correlate the surface chemistry of low rank coal with hydrophobicity. Six square areas without mineral impurities on low rank coal surfaces were selected as testing areas. A specially-designed methodology was applied to conduct micro-FTIR measurements and contact angle tests on the same testing area. A series of semi-quantitative functional group ratios derived from micro-FTIR spectra were correlated with contact angles, and the determination coefficients of linear regression were calculated and compared in order to identify the structure of the functional group ratios. Finally, two semi-quantitative ratios composed of aliphatic carbon hydrogen, aromatic carbon hydrogen and two different types of carbonyl groups were proposed as indicators of low rank coal hydrophobicity. This work provided a rapid way to predict low rank coal hydrophobicity through its functional group composition and helped us understand the hydrophobicity heterogeneity of low rank coal from the perspective of its surface chemistry.


Sign in / Sign up

Export Citation Format

Share Document