scholarly journals Numerical Investigation of Particulate Matter Processes in Gasoline Direct Injection Engines through Integrated Computational Fluid Dynamics–Chemical Kinetic Modeling

2020 ◽  
Vol 34 (4) ◽  
pp. 4909-4924
Author(s):  
Jing Yang Tan ◽  
Fabrizio Bonatesta ◽  
Hoon Kiat Ng ◽  
Suyin Gan
2018 ◽  
Vol 140 (10) ◽  
Author(s):  
Eiji Ishii ◽  
Yoshihito Yasukawa ◽  
Kazuki Yoshimura ◽  
Kiyotaka Ogura

The generation of particulate matter (PM) is one problem with gasoline direct-injection engines. PM is generated in high-density regions of fuel. Uniform air/fuel mixtures and short fuel-spray durations with multiple injections are effective in enabling the valves of fuel injectors not to wobble and dribble. We previously studied what effects the opening and closing of valves had on fuel spray behavior and found that valve motions in the opening and closing directions affected spray behavior and generated coarse droplets during the end-of-injection. We focused on the effects of valve wobbling on fuel spray behavior in this study, especially on the behavior during the end-of-injection. The effects of wobbling on fuel spray with full valve strokes were first studied, and we found that simulated spray behaviors agreed well with the measured ones. We also studied the effects on fuel dribble during end-of-injection. When a valve wobbled from left to right, the fuel dribble decreased in comparison with a case without wobbling. When a valve wobbled from the front to the rear, however, fuel dribble increased. Surface tension significantly affected fuel dribble, especially in forming low-speed liquid columns and coarse droplets. Fuel dribble was simulated while changing the wetting angle on walls from 60 to 5 deg. We found that the appearance of coarse droplets in sprays decreased during the end-of-injection by changing the wetting angles from 60 to 5 deg.


2018 ◽  
Vol 230 ◽  
pp. 794-802 ◽  
Author(s):  
C. Hergueta ◽  
A. Tsolakis ◽  
J.M. Herreros ◽  
M. Bogarra ◽  
E. Price ◽  
...  

2019 ◽  
Vol 21 (8) ◽  
pp. 1520-1540 ◽  
Author(s):  
Ankit A Raut ◽  
J M Mallikarjuna

In-cylinder water injection is a promising approach for reducing NOx and soot emissions from internal combustion engines. It allows one to use a higher compression ratio by reducing engine knock; hence, higher fuel economy and power output can be achieved. However, water injection can also affect engine combustion and emission characteristics if water injection and injector parameters are not properly set. Majority of the previous studies on the water injection are done through experiments. Therefore, subtle aspects of water injection such as in-cylinder interaction of water sprays, spatial distribution of water vapor, and effect on flame propagation are not clearly understood and rarely reported in literature due to experimental limitations. Thus, in the present article, a computational fluid dynamics investigation is carried out to analyze the effects of direct water injection under various injector configurations on water evaporation, combustion, performance, and emission characteristics of a gasoline direct injection engine. The emphasis is given to analyze in-cylinder water spray interactions, flame propagation, water spray droplet size distribution, and water vapor spatial distribution inside the engine cylinder. For the study, the water-to-fuel ratio is varied from 0 to 1. Various water injector configurations using nozzle hole diameters of 0.14, 0.179, and 0.205 mm, along with nozzle holes of 4, 5, 6, and 7, are considered for comparison in addition to the case of no_water. Computational fluid dynamics models used in this study are validated with the available data in literature. From the results, it is found that the emission and performance characteristics of the engine are highly dependent on water evaporation characteristics. Also, the water-to-fuel ratio of 0.6 with 6 number of nozzle holes and the nozzle diameter of 0.14 mm results in the highest indicated mean effective pressure and the lowest NOx, soot, and CO emissions compared to other cases considered.


Author(s):  
Jason Smith ◽  
Robert N. Eli

This paper reports on a laboratory experiment conducted more than 30 years ago (Eli, 1974, unpublished), and recent Computational Fluid Dynamics (CFD) investigations, focusing on the properties of a plane tangential jet produced by an apparatus called a “centrifugal nozzle.” The authors believe that the centrifugal nozzle has potential industrial applications in several areas related to fluid mixing and particulate matter suspension in mixing tanks. It is also believed that this experiment, or one similar, may provide data useful for benchmarking CFD models.


Sign in / Sign up

Export Citation Format

Share Document