Contrasting Controls on the Diel Isotopic Variation of Hg0 at Two High Elevation Sites in the Western United States

2020 ◽  
Vol 54 (17) ◽  
pp. 10502-10513 ◽  
Author(s):  
Aaron Y. Kurz ◽  
Joel D. Blum ◽  
Lynne E. Gratz ◽  
Daniel A. Jaffe
2017 ◽  
Vol 18 (5) ◽  
pp. 1227-1245 ◽  
Author(s):  
Edwin Sumargo ◽  
Daniel R. Cayan

Abstract This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by ±10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.


2003 ◽  
Vol 39 (6) ◽  
Author(s):  
David W. Clow ◽  
James O. Sickman ◽  
Robert G. Striegl ◽  
David P. Krabbenhoft ◽  
John G. Elliott ◽  
...  

2013 ◽  
Vol 30 (6) ◽  
pp. 1161-1170 ◽  
Author(s):  
Nicholas Grant ◽  
Laurel Saito ◽  
Mark Weltz ◽  
Mark Walker ◽  
Christopher Daly ◽  
...  

Abstract In the arid western United States, wildlife water developments, or “guzzlers,” are important water sources for wildlife, and consist of impermeable roof structures designed to intercept precipitation and small tanks for storing water. Guzzlers are typically installed in remote mid- to high-elevation basins, where precipitation data are often scarce. In this study, small-game guzzlers were examined for feasibility as potential sites for improving estimates of climatic parameters in remote Nevada catchments. Instruments measuring liquid precipitation and water level were installed at two guzzler field sites. Although one field site was vandalized during the study, field results indicated that water levels in the tank measured by Hobo pressure transducers corresponded well with precipitation events measured by the Texas Electronics tipping-bucket rain gauge, and that measured data were similar to Parameter–Elevation Regressions on Independent Slopes Model (PRISM) estimates. Minimum temperatures from the guzzler sites were similar to PRISM; however, maximum temperatures were a few degrees higher, possibly because temperature sensors were unshielded. With over 1600 guzzlers in Nevada and thousands more throughout the western United States, this study initiates exploration of the feasibility of augmenting individual guzzler sites to enhance climatic monitoring at a relatively low cost to improve the quality and density of climate observations, benefitting hydrologists, climatologists, and wildlife managers.


2021 ◽  
Author(s):  
Colin J Carlson ◽  
Sarah N Bevins ◽  
Boris V Schmid

After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we develop a new method to detect the signal of climate change in infectious disease distributions, and test whether plague reservoirs and spillover risk have shifted since 1950. We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs - with suitability increasing up to 40% in some places - and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts.


2006 ◽  
Vol 7 (6) ◽  
pp. 1199-1217 ◽  
Author(s):  
Jessica D. Lundquist ◽  
Alan L. Flint

Abstract Historic streamflow records show that the onset of snowfed streamflow in the western United States has shifted earlier over the past 50 yr, and March 2004 was one of the earliest onsets on record. Record high temperatures occurred throughout the western United States during the second week of March, and U.S. Geological Survey (USGS) stream gauges throughout the area recorded early onsets of streamflow at this time. However, a set of nested subbasins in Yosemite National Park, California, told a more complicated story. In spite of high air temperatures, many streams draining high-elevation basins did not start flowing until later in the spring. Temperatures during early March 2004 were as high as temperatures in late March 2002, when streams at all of the monitored Yosemite basins began flowing at the same time. However, the March 2004 onset occurred before the spring equinox, when the sun was lower in the sky. Thus, shading and solar radiation differences played a much more important role in 2004, leading to differences in streamflow timing. These results suggest that as temperatures warm and spring melt shifts earlier in the season, topographic effects will play an even more important role than at present in determining snowmelt timing.


Sign in / Sign up

Export Citation Format

Share Document