scholarly journals Plague risk in the western United States over seven decades of environmental change

2021 ◽  
Author(s):  
Colin J Carlson ◽  
Sarah N Bevins ◽  
Boris V Schmid

After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we develop a new method to detect the signal of climate change in infectious disease distributions, and test whether plague reservoirs and spillover risk have shifted since 1950. We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs - with suitability increasing up to 40% in some places - and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts.

Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 251
Author(s):  
Adi Zweifler (Zvifler) ◽  
Michael O’Leary ◽  
Kyle Morgan ◽  
Nicola K. Browne

Increasing evidence suggests that coral reefs exposed to elevated turbidity may be more resilient to climate change impacts and serve as an important conservation hotspot. However, logistical difficulties in studying turbid environments have led to poor representation of these reef types within the scientific literature, with studies using different methods and definitions to characterize turbid reefs. Here we review the geological origins and growth histories of turbid reefs from the Holocene (past), their current ecological and environmental states (present), and their potential responses and resilience to increasing local and global pressures (future). We classify turbid reefs using new descriptors based on their turbidity regime (persistent, fluctuating, transitional) and sources of sediment input (natural versus anthropogenic). Further, by comparing the composition, function and resilience of two of the most studied turbid reefs, Paluma Shoals Reef Complex, Australia (natural turbidity) and Singapore reefs (anthropogenic turbidity), we found them to be two distinct types of turbid reefs with different conservation status. As the geographic range of turbid reefs is expected to increase due to local and global stressors, improving our understanding of their responses to environmental change will be central to global coral reef conservation efforts.


Forests ◽  
2015 ◽  
Vol 6 (12) ◽  
pp. 3197-3211 ◽  
Author(s):  
Hyunjin An ◽  
Jianbang Gan ◽  
Sung Cho

2017 ◽  
Vol 18 (5) ◽  
pp. 1227-1245 ◽  
Author(s):  
Edwin Sumargo ◽  
Daniel R. Cayan

Abstract This study investigates the spatial and temporal variability of cloudiness across mountain zones in the western United States. Daily average cloud albedo is derived from a 19-yr series (1996–2014) of half-hourly Geostationary Operational Environmental Satellite (GOES) images. During springtime when incident radiation is active in driving snowmelt–runoff processes, the magnitude of daily cloud variations can exceed 50% of long-term averages. Even when aggregated over 3-month periods, cloud albedo varies by ±10% of long-term averages in many locations. Rotated empirical orthogonal functions (REOFs) of daily cloud albedo anomalies over high-elevation regions of the western conterminous United States identify distinct regional patterns, wherein the first five REOFs account for ~67% of the total variance. REOF1 is centered over Northern California and Oregon and is pronounced between November and March. REOF2 is centered over the interior northwest and is accentuated between March and July. Each of the REOF/rotated principal components (RPC) modes associates with anomalous large-scale atmospheric circulation patterns and one or more large-scale teleconnection indices (Arctic Oscillation, Niño-3.4, and Pacific–North American), which helps to explain why anomalous cloudiness patterns take on regional spatial scales and contain substantial variability over seasonal time scales.


2012 ◽  
Vol 18 (6) ◽  
pp. 731-758 ◽  
Author(s):  
Russell Jones ◽  
Constance Travers ◽  
Charles Rodgers ◽  
Brian Lazar ◽  
Eric English ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document