On-Site Treatment of Shale Gas Flowback and Produced Water in Sichuan Basin by Fertilizer Drawn Forward Osmosis for Irrigation

2020 ◽  
Vol 54 (17) ◽  
pp. 10926-10935 ◽  
Author(s):  
Haiqing Chang ◽  
Shi Liu ◽  
Tiezheng Tong ◽  
Qiping He ◽  
John C. Crittenden ◽  
...  

2017 ◽  
Vol 3 (2) ◽  
pp. 340-351 ◽  
Author(s):  
Yimeng Zhang ◽  
Zhisheng Yu ◽  
Hongxun Zhang ◽  
Ian P. Thompson

Production facilities harbor diverse microorganisms including sulfidogenic bacteria, acid producers and fermenters, showing the potential need for effective microbial control during the production of shale gas.



Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Jawad AlQattan ◽  
Youngjin Kim ◽  
Sarah Kerdi ◽  
Adnan Qamar ◽  
Noreddine Ghaffour

An appropriate spacer design helps in minimizing membrane fouling which remains the major obstacle in forward osmosis (FO) systems. In the present study, the performance of a hole-type spacer (having holes at the filament intersections) was evaluated in a FO system and compared to a standard spacer design (without holes). The hole-type spacer exhibited slightly higher water flux and reverse solute flux (RSF) when Milli-Q water was used as feed solution and varied sodium chloride concentrations as draw solution. During shale gas produced water treatment, a severe flux decline was observed for both spacer designs due to the formation of barium sulfate scaling. SEM imaging revealed that the high shear force induced by the creation of holes led to the formation of scales on the entire membrane surface, causing a slightly higher flux decline than the standard spacer. Simultaneously, the presence of holes aided to mitigate the accumulation of foulants on spacer surface, resulting in no increase in pressure drop. Furthermore, a full cleaning efficiency was achieved by hole-type spacer attributed to the micro-jets effect induced by the holes, which aided to destroy the foulants and then sweep them away from the membrane surface.



Author(s):  
Roger Yuan ◽  
Fa Dwan ◽  
Navpreet Singh ◽  
Liang Jin ◽  
Danny Soo ◽  
...  






Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2679
Author(s):  
Yuying Zhang ◽  
Shu Jiang ◽  
Zhiliang He ◽  
Yuchao Li ◽  
Dianshi Xiao ◽  
...  

In order to analyze the main factors controlling shale gas accumulation and to predict the potential zone for shale gas exploration, the heterogeneous characteristics of the source rock and reservoir of the Wufeng-Longmaxi Formation in Sichuan Basin were discussed in detail, based on the data of petrology, sedimentology, reservoir physical properties and gas content. On this basis, the effect of coupling between source rock and reservoir on shale gas generation and reservation has been analyzed. The Wufeng-Longmaxi Formation black shale in the Sichuan Basin has been divided into 5 types of lithofacies, i.e., carbonaceous siliceous shale, carbonaceous argillaceous shale, composite shale, silty shale, and argillaceous shale, and 4 types of sedimentary microfacies, i.e., carbonaceous siliceous deep shelf, carbonaceous argillaceous deep shelf, silty argillaceous shallow shelf, and argillaceous shallow shelf. The total organic carbon (TOC) content ranged from 0.5% to 6.0% (mean 2.54%), which gradually decreased vertically from the bottom to the top and was controlled by the oxygen content of the bottom water. Most of the organic matter was sapropel in a high-over thermal maturity. The shale reservoir of Wufeng-Longmaxi Formation was characterized by low porosity and low permeability. Pore types were mainly <10 nm organic pores, especially in the lower member of the Longmaxi Formation. The size of organic pores increased sharply in the upper member of the Longmaxi Formation. The volumes of methane adsorption were between 1.431 m3/t and 3.719 m3/t, and the total gas contents were between 0.44 m3/t and 5.19 m3/t, both of which gradually decreased from the bottom upwards. Shale with a high TOC content in the carbonaceous siliceous/argillaceous deep shelf is considered to have significant potential for hydrocarbon generation and storage capacity for gas preservation, providing favorable conditions of the source rock and reservoir for shale gas.



Desalination ◽  
2015 ◽  
Vol 366 ◽  
pp. 113-120 ◽  
Author(s):  
Gang Chen ◽  
Zhouwei Wang ◽  
Long D. Nghiem ◽  
Xue-Mei Li ◽  
Ming Xie ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document