microbial distribution
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 52)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Lin Lyu ◽  
Ru Feng ◽  
Xue Li ◽  
Xiaofei Yu ◽  
GuoQiang Chen ◽  
...  

We developed an analysis pipeline that can extract microbial sequences from Spatial Transcriptomic data and assign taxonomic labels to them, generating a spatial microbial abundance matrix in addition to the default host expression one, enabling simultaneous analysis of host expression and microbial distribution. We applied it on both human and murine intestinal datasets and validated the spatial microbial abundance information with alternative assays. Finally, we present a few biological insights that can be gained from this novel data. In summary, this proof of concept work demonstrated the feasibility of Spatial Meta-transcriptomic analysis, and pave the way for future experimental optimization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nan Duan ◽  
Liying Sun ◽  
Chenwei Huang ◽  
Haixia Li ◽  
Bin Cheng

Background: Bloodstream infection (BSI) is an increasing public health concern worldwide, representing a serious infection with significant morbidity and mortality, especially in children and the elderly. The predominant microbial distribution and antibiotic susceptibility were investigated among BSIs in the different intensive care units (ICUs)—pediatric ICU (PICU), surgical ICU (SICU), cardiac ICU (CICU), respiratory ICU (RICU), and geriatric ICU (GICU)—in order to achieve more efficient and appropriate therapies for patients in various ICUs.Methods: In this retrospective cross-sectional study, the blood specimens were collected from five different ICUs of Peking University First Hospital and comprehensive ICU of Miyun Teaching Hospital (Miyun ICU) before antimicrobial treatment from 2017 to 2020. Microorganism cultures of the blood samples were conducted, and positive cultures were tested for type of pathogens and drug susceptibility.Results: The prevalence of BSIs was the highest in the Miyun ICU (10.85%), followed by the RICU (9.48%) and the PICU (8.36%). The total prevalence of Gram-positive bacterial strains (especially Staphylococcus spp. and Enterococcus spp.) in the PICU (44.55%), SICU (57.58%), CICU (55.00%), GICU (49.06%), and Miyun ICU (57.58%) was higher than that of Gram-negative bacteria. The major bacterial strain was Acinetobacter baumannii in the PICU (21.82%); Klebsiella pneumoniae in the SICU (12.88%), CICU (30.00%), and RICU (30.39%); Escherichia coli in the GICU (20.75%); and Staphylococcus epidermidis (18.18%) in the Miyun ICU. Staphylococcus hominis of BSIs remained highly susceptible (>70%) to gentamicin, linezolid, daptomycin, teicoplanin, vancomycin, tigecycline, and rifampicin in all the ICUs. Its antibiotic sensitivity to levofloxacin was moderate in the PICU and CICU, but mild (<30%) in the SICU, RICU, and GICU. K. pneumoniae was highly susceptible to doxycycline, minocycline, and tigecycline in all the ICUs except the RICU, and its antibiotic sensitivity to imipenem, meropenem, amikacin, ciprofloxacin, and levofloxacin was high/moderate in the PICU, CICU, GICU, and Miyun ICU, but mild in the SICU and RICU.Conclusion: The current study demonstrated the distribution of prevalent microorganisms, and their antimicrobial susceptibility exhibited a high divergence among BSIs in different ICUs from a tertiary hospital and an outer suburban hospital in Beijing. Therefore, different antibiotic therapies for various wards and distinct age groups (especially between pediatric and elderly patients) should be considered to control the emergence and spread of highly antibiotic-resistant infections.


Author(s):  
Yanlong Chen ◽  
Xuehui Chen ◽  
Xin Huang ◽  
Ying Duan ◽  
He Gao ◽  
...  

ObjectivesThis study aimed to analyze the periodontal conditions of patients with obstructive sleep apnea (OSA) in relation to the salivary microbiome.Materials and MethodsIn total, 54 male adults (27 with OSA, 27 controls) completed this cross-sectional study. All participants were monitored by overnight polysomnography (PSG) and underwent full-mouth periodontal examination. Saliva samples were then collected, and the microbial 16S ribosomal RNA gene was sequenced. The data were analyzed to determine the microbial distribution and the community structure of the two groups.ResultsDemonstrated by alpha and beta diversity, the OSA group had a lower microbial richness and a lower observed species than the controls. There was no significant difference in the microbial species diversity or evenness between the OSA and the non-OSA groups. The OSA group had fewer operational taxonomic units (OTUs), and the distribution of microbiome showed that several gram-positive bacteria had higher abundance in the OSA group. As for periodontal pathogens, the relative abundance of Prevotella was significantly increased in the OSA group. No significant difference was observed in the relative abundance of other pathogens at either the genus or species level.ConclusionsThe salivary microbial community structure was altered in patients with OSA in terms of species richness and trans-habitat diversity, along with an increase in Prevotella, a specific periodontal pathogen. These findings might explain the high prevalence of periodontitis in OSA patients.


Ecohydrology ◽  
2021 ◽  
Author(s):  
Valerie Ouellet ◽  
Melinda D. Daniels ◽  
Marc Peipoch ◽  
Laura Zgleszewski ◽  
Nathan Watson ◽  
...  

2021 ◽  
Author(s):  
Supaporn Phanwilai ◽  
Pongsak Noophan ◽  
Chi-Wang Li ◽  
Kwang-Ho Choo

Abstract Full-scale anaerobic, anoxic and aerobic (A2O) process is used worldwide for biological nutrient removal (BNR). However, operation parameters for nitrogen removals and information of microbial communities related to nitrogen removal in full-scale A2O wastewater treatment plants (WWTPs) having low and high COD/TN ratios are not available. Based on the analysis of four full-scale A2O WWTPs, it is suggested that maintaining longer SRT of ≥ 30 day and DO of ≥ 0.9±0.2 mg-O2 L-1 is needed to improve nitrogen removal efficiency under low COD/TN ratio (≤ 3.7). On other hand, at high COD/TN ratio (≥ 4.2), DO level of ≥ 2.6 mg-O2 /L and typical SRT of 19‒ 25 days would be suggested. It was confirmed that phosphorus removal efficiency significantly improved under BOD/TP ratio of > 20 for A2O process in these full-scale WWTP. Microbial distribution analysis showed that ammonia-oxidizing archaea (AOA) was abundant under conditions of low DO level, longer SRT, high temperature and low COD/TN ratio (≤ 3.7). Nitrosomonas sp. are mostly found in aerobic tank of full-scale A2O WWTPs. However, abundances of Nitrosomonas sp. are proportional to DO and NH4+ concentrations for WWTPs with high COD/TN ratio. Nitrosospira sp. are only found under operating condition of longer SRT for WWTPs with low COD/TN ratio. Abundances of Nitrobacter sp. are proportional to DO concentration and temperature rather than abundance of Nitrospira sp. Predominance of nosZ-type denitrifiers were found at low COD/TN ratio. Abundance of denitrifiers by using nirS genes was over abundance of denitrifiers by using nirK genes at high COD/TN ratios WWTPs.


Author(s):  
N. A. Hamiruddin ◽  
N. A. Awang ◽  
S. F. Mohd Shahpudin ◽  
N. S. Zaidi ◽  
M. A. M. Said ◽  
...  

Abstract Currently, research trends on aerobic granular sludge (AGS) have integrated the operating conditions of extracellular polymeric substances (EPS) towards the stability of AGS systems in various types of wastewater with different physical and biochemical characteristics. More attention is given to the stability of the AGS system for real site applications. Although recent studies have reported comprehensively the mechanism of AGS formation and stability in relation to other intermolecular interactions such as microbial distribution, shock loading and toxicity, standard operating condition control strategy for different types of wastewater have not yet been discussed. Thus, the dimensional multi-layer structural model of AGS is discussed comprehensively in the first part of this review paper, focusing on diameter size, thickness variability of each layer and diffusion factor. This can assist in facilitating the interrelation between disposition and stability of AGS structure to correspond to the changes in wastewater types, which is the main objective and novelty of this review.


Author(s):  
Kwan Young Oh ◽  
Sunghee Lee ◽  
Myung-Shin Lee ◽  
Myung-Ju Lee ◽  
Eunjung Shim ◽  
...  

Vaginal dysbiosis, such as bacterial vaginosis (BV) and aerobic vaginitis (AV), is an important cause of premature birth in pregnant women. However, there is very little research on vaginal microbial distribution in AV compared to that in BV. This study aimed to analyze the composition of the vaginal microbiota of pregnant women with AV using microbial community analysis and identify the causative organism using each criterion of the AV scoring system. Also, we compared the quantification of aerobic bacteria using quantitative polymerase chain reaction (qPCR) and their relative abundances (RA) using metagenomics. This prospective case–control study included 228 pregnant Korean women from our previous study. A wet mount test was conducted on 159 women to diagnose AV using the AV scoring system. Vaginal samples were analyzed using metagenomics, Gram staining for Nugent score determination, conventional culture, and qPCR for Staphylococcus spp., Streptococcus spp., and Enterobacteriaceae. The relative abundances (RAs) of eleven species showed significant differences among the three groups (Normal flora (NF), mild AV, and moderate AV). Three species including Lactobacillus crispatus were significantly lower in the AV groups than in the NF group, while eight species were higher in the AV groups, particularly moderate AV. The decrease in the RA of L. crispatus was common in three criteria of the AV scoring system (Lactobacillary, WBC, and background flora grades), while it did not show a significant difference among the three grade groups of the toxic leukocyte criterion. Also, the RAs of anaerobes, such as Gardnerella and Megasphaera, were higher in the AV groups, particularly moderate AV, while the RAs of aerobes were very low (RA < 0.01). Therefore, qPCR was performed for aerobes (Staphylococcus spp., Streptococcus spp., and Enterobacteriaceae); however, their quantification did not show a higher level in the AV groups when compared to that in the NF group. Therefore, AV might be affected by the RA of Lactobacillus spp. and the main anaerobes, such as Gardnerella spp. Activation of leukocytes under specific conditions might convert them to toxic leukocytes, despite high levels of L. crispatus. Thus, the pathogenesis of AV can be evaluated under such conditions.


Author(s):  
Jofre Herrero ◽  
Diana Puigserver ◽  
Ivonne Nijenhuis ◽  
Kevin Kuntze ◽  
José M. Carmona

AbstractChlorinated solvents are among the common groundwater contaminants that show high complexity in their distribution in the subsoil. Microorganisms play a vital role in the natural attenuation of chlorinated solvents. Thus far, how the in situ soil microbial community responds to chlorinated solvent contamination has remained unclear. In this study, the microbial community distribution within two boreholes located in the source area of perchloroethene (PCE) was investigated via terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis. Microbial data were related to the lithological and geochemical data and the concentration and isotopic composition of chloroethenes to determine the key factors controlling the distribution of the microbial communities. The results indicated that Proteobacteria, Actinobacteria, and Firmicutes were the most abundant phylums in the sediment. The statistical correlation with the environmental data proved that fine granulometry, oxygen tolerance, terminal electron-acceptor processes, and toxicity control microbial structure. This study improves our understanding of how the microbial community in the subsoil responds to high concentrations of chlorinated solvents.


2021 ◽  
Vol 12 ◽  
Author(s):  
David Danko ◽  
Ganesh Babu Malli Mohan ◽  
Maria A. Sierra ◽  
Michelle Rucker ◽  
Nitin K. Singh ◽  
...  

BackgroundCrewed National Aeronautics and Space Administration (NASA) missions to other solar system bodies are currently being planned. One high-profile scientific focus during such expeditions would be life detection, specifically the discovery of past or present microbial life, if they exist. However, both humans and associated objects typically carry a high microbial burden. Thus, it is essential to distinguish between microbes brought with the expedition and those present on the exploring planets. Modern spacesuits are unique, customized spacecraft which provide protection, mobility and life support to crew during spacewalks, yet they vent, and the mobility of microbes through spacesuits has not been studied.ResultsTo evaluate the microbial colonization of spacesuits, NASA used an Extravehicular Activity swab kit to examine viable microbial populations of 48 samples from spacesuits using both traditional microbiological methods and molecular sequencing methods. The cultivable microbial population ranged from below the detection limit to 9 × 102 colony forming units per 25 cm2 of sample and also significantly varied by the location. The cultivable microbial diversity was dominated by members of Bacillus, Arthrobacter, and Ascomycota. However, 16S rRNA-based viable bacterial burden ranged from 105 to 106 copies per 25 cm2 of sample. Shotgun metagenome sequencing revealed the presence of a diverse microbial population on the spacesuit surfaces, including Curtobacterium and Methylobacterium from across all sets of spacesuits in high abundance. Among bacterial species identified, higher abundance of Cutibacterium acnes, Methylobacterium oryzae, and M. phyllosphaerae reads were documented.ConclusionThe results of this study provide evidence that identical microbial strains may live on the wrist joint, inner gauntlet, and outer gauntlet of spacesuits. This raises the possibility, but does not confirm that microbial contaminants on the outside of the suits could contaminate planetary science operations unless additional measures are taken. Overall, these data provide the first estimate of microbial distribution associated with spacesuit surfaces, which will help future mission planners develop effective planetary protection strategies.


Sign in / Sign up

Export Citation Format

Share Document