scholarly journals Correction to Role of in Situ Natural Organic Matter in Mobilizing As during Microbial Reduction of FeIII-Mineral-Bearing Aquifer Sediments from Hanoi (Vietnam)

2020 ◽  
Vol 54 (16) ◽  
pp. 10380-10380
Author(s):  
M. Glodowska ◽  
E. Stopelli ◽  
M. Schneider ◽  
A. Lightfoot ◽  
B. Rathi ◽  
...  
2020 ◽  
Vol 54 (7) ◽  
pp. 4149-4159 ◽  
Author(s):  
M. Glodowska ◽  
E. Stopelli ◽  
M. Schneider ◽  
A. Lightfoot ◽  
B. Rathi ◽  
...  

2019 ◽  
Author(s):  
Kamila Knapik ◽  
Andrea Bagi ◽  
Adriana Krolicka ◽  
Thierry Baussant

AbstractThe use of natural marine bacteria as “oil sensors” for the detection of pollution events can be suggested as a novel way of monitoring oil occurrence at sea. Nucleic acid-based devices generically called genosensors are emerging as potentially promising tools for in situ detection of specific microbial marker genes suited for that purpose. Functional marker genes are particularly interesting as targets for oil-related genosensing but their identification remains a challenge. Here, seawater samples, collected in tanks with oil addition mimicking a realistic oil spill scenario, were filtered and archived by the Environmental Sample Processor (ESP), a fully robotized genosensor, and the samples were then used for post-retrieval metatranscriptomic analysis. After extraction, RNA from ESP-archived samples at start, day 4 and day 7 of the experiment was used for sequencing. Metatranscriptomics revealed that several KEGG pathways were significantly enriched in samples exposed to oil. However, these pathways were highly expressed also in the non-oil-exposed water samples, most likely as a result of the release of natural organic matter from decaying phytoplankton. Temporary peaks of aliphatic alcohol and aldehyde dehydrogenases and monoaromatic ring-degrading enzymes (e.g. ben, box, and dmp clusters) were observed on day 4 in both control and oil tanks. Few alkane 1-monooxygenase genes were upregulated on oil, mostly transcribed by families Porticoccaceae and Rhodobacteraceae, together with aromatic ring-hydroxylating dioxygenases, mostly transcribed by Rhodobacteraceae. Few transcripts from obligate hydrocarbonoclastic genera of Alcanivorax, Oleispira and Cycloclasticus, were significantly enriched in the oil-treated tank in comparison to control, and these were mostly transporters and genes involved in nitrogen and phosphorous acquisition. This study highlights the importance of seasonality, i.e., phytoplankton occurrence and senescence leading to organic compound release which can be used preferentially by bacteria over oil compounds, delaying the latter process. As a result, such seasonal effect can reduce the sensitivity of genosensing tools employing bacterial functional genes to sense oil. A better understanding of the use of natural organic matter by bacteria involved in oil-biodegradation is needed to develop an array of functional markers enabling the rapid and specific in situ detection of anthropogenic pollution.


2019 ◽  
Vol 5 (12) ◽  
pp. 2242-2250
Author(s):  
Xue Shen ◽  
Baoyu Gao ◽  
Kangying Guo ◽  
Qinyan Yue

Coagulation prior to the ultrafiltration (UF) process was implemented to improve natural organic matter (NOM) removal and membrane permeability.


2004 ◽  
Vol 50 (12) ◽  
pp. 279-285 ◽  
Author(s):  
J.H. Kweon ◽  
D.F. Lawler

The biggest impediment for applying membrane processes is fouling that comes from mass flux (such as particle and organic matter) to the membrane surface and its pores. Numerous research articles have indicated that either particles or natural organic matter (NOM) has been the most detrimental foulant. Therefore, the role of particles in membrane fouling was investigated with two synthetic waters (having either particles alone or particles with simple organic matter) and a natural water. Membrane fouling was evaluated with flux decline behavior and direct images from scanning electron microscopy. The results showed that the combined fouling by kaolin and dextran (a simple organic compound selected as a surrogate for NOM) showed no difference from the fouling with only the organic matter. The similarity might stem from the fact that dextran (i.e., polysaccharide) has no ability to be adsorbed on the clay material, so that the polysaccharide behaves the same with respect to the membrane with or without clay material being present. In contrast to kaolin, the natural particles showed a dramatic effect on membrane fouling.


2010 ◽  
Vol 44 (12) ◽  
pp. 4519-4524 ◽  
Author(s):  
Dao Janjaroen ◽  
Yuanyuan Liu ◽  
Mark S. Kuhlenschmidt ◽  
Theresa B. Kuhlenschmidt ◽  
Thanh H. Nguyen

2011 ◽  
Vol 78 (2) ◽  
pp. 189-200 ◽  
Author(s):  
A.W. Zularisam ◽  
Anwar Ahmad ◽  
Mimi Sakinah ◽  
A.F. Ismail ◽  
T. Matsuura

Sign in / Sign up

Export Citation Format

Share Document