scholarly journals Deep Dive into Plastic Monomers, Additives, and Processing Aids

Author(s):  
Helene Wiesinger ◽  
Zhanyun Wang ◽  
Stefanie Hellweg
Keyword(s):  
Author(s):  
Shreya Joshi ◽  
Ms Bhavyaa ◽  
Suhani Gupta ◽  
Lalita Luthra

Blockchain is considered to be a disruptive core technology. Although many researchers have realized the importance of blockchain, but the research of it is still emerging. It is the record-keeping technology behind bitcoin and is one of the hottest and fastest growing skills in the IT sector today. It serves as an immutable ledger which allows transactions to take place in a decentralized man Blockchain-based applications are rising up, covering numerous fields including finance, healthcare, product management, Internet of Things (IoT), and many more. However, there are still some challenges of blockchain technology such as scalability and security problems which need to be overcome. This paper comprises of a comprehensive study of Blockchain technology. We have included here a deep dive into how blockchains work, its architecture, consensus and various applications. Furthermore, technical challenges are briefly listed.


2001 ◽  
Author(s):  
Michael A. Lowe ◽  
Dennis Reeves

2019 ◽  
Author(s):  
Lauren Cohen ◽  
Mo Haghbin ◽  
Christopher J. Malloy ◽  
Matthew Schilling
Keyword(s):  

2012 ◽  
Author(s):  
Wendee M Brunish
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Selin Sökmen ◽  
Katja Oßwald ◽  
Katrin Reincke ◽  
Sybill Ilisch

High compatibility and good rubber–filler interactions are required in order to obtain high quality products. Rubber–filler and filler–filler interactions can be influenced by various material factors, such as the presence of processing aids. Although different processing aids, especially the plasticizers, and their effects on compatibility have been investigated in the literature, their influence on rubber–filler interactions in highly active filler reinforced mixtures is not explicit and has not been investigated in depth. For this purpose, the influence of treated distillate aromatic extract (TDAE) oil content and its addition time on interactions between silica and rubber chains were investigated in this study. Rubber–filler and filler–filler interactions of uncured and cured silica-filled SBR/BR blends were characterized by using rubber layer L concept and dynamic mechanical analysis, whereas mechanical properties were studied by tensile test and Shore A hardness. Five parts per hundred rubber (phr) TDAE addition at 0, 1.5, and 3 min of mixing were characterized to investigate the influence of TDAE addition time on rubber–filler interactions. It was observed that addition time of TDAE can influence the development of bounded rubber structure and the interfacial interactions, especially at short time of mixing, less than 5 min. Oil addition with silica at 1.5 min of mixing resulted in fast rubber layer development and a small reduction in storage shear modulus of uncured blends. The influence of oil content on rubber–filler and filler–filler interactions were investigated for the binary blends without oil, with 5 and 20 phr TDAE content. The addition of 5 phr oil resulted in a slight increase in rubber layer and 0.05 MPa reduction in Payne effect of uncured blends. The storage tensile modulus of vulcanizates at small strains decreased from 13.97 to 8.28 MPa after oil addition. Twenty parts per hundred rubber (phr) oil addition to binary blends caused rubber layer L to decrease from 0.45 to 0.42. The storage tensile modulus of the vulcanizates and its reduction with higher amplitudes were incontrovertibly high among the vulcanizates with lower oil content, which were 13.57 and 4.49 MPa, respectively. When any consequential change in mechanical properties of styrene–butadiene rubber (SBR)/butadiene rubber (BR) blends could not be observed at different TDAE addition time, increasing amount of oil in blends enhanced elongation at break, and decreased Shore A hardness and tensile strength.


2021 ◽  
Vol 24 (3) ◽  
pp. 5-8
Author(s):  
Kai Geissdoerfer ◽  
Mikołaj Chwalisz ◽  
Marco Zimmerling

Collaboration of batteryless devices is essential to their success in replacing traditional battery-based systems. Without significant energy storage, spatio-temporal fluctuations of ambient energy availability become critical for the correct functioning of these systems. We present Shepherd, a testbed for the batteryless Internet of Things (IoT) that can record and reproduce spatio-temporal characteristics of real energy environments to obtain insights into the challenges and opportunities of operating groups of batteryless sensor nodes.


Sign in / Sign up

Export Citation Format

Share Document