scholarly journals Influence of Treated Distillate Aromatic Extract (TDAE) Content and Addition Time on Rubber-Filler Interactions in Silica Filled SBR/BR Blends

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 698
Author(s):  
Selin Sökmen ◽  
Katja Oßwald ◽  
Katrin Reincke ◽  
Sybill Ilisch

High compatibility and good rubber–filler interactions are required in order to obtain high quality products. Rubber–filler and filler–filler interactions can be influenced by various material factors, such as the presence of processing aids. Although different processing aids, especially the plasticizers, and their effects on compatibility have been investigated in the literature, their influence on rubber–filler interactions in highly active filler reinforced mixtures is not explicit and has not been investigated in depth. For this purpose, the influence of treated distillate aromatic extract (TDAE) oil content and its addition time on interactions between silica and rubber chains were investigated in this study. Rubber–filler and filler–filler interactions of uncured and cured silica-filled SBR/BR blends were characterized by using rubber layer L concept and dynamic mechanical analysis, whereas mechanical properties were studied by tensile test and Shore A hardness. Five parts per hundred rubber (phr) TDAE addition at 0, 1.5, and 3 min of mixing were characterized to investigate the influence of TDAE addition time on rubber–filler interactions. It was observed that addition time of TDAE can influence the development of bounded rubber structure and the interfacial interactions, especially at short time of mixing, less than 5 min. Oil addition with silica at 1.5 min of mixing resulted in fast rubber layer development and a small reduction in storage shear modulus of uncured blends. The influence of oil content on rubber–filler and filler–filler interactions were investigated for the binary blends without oil, with 5 and 20 phr TDAE content. The addition of 5 phr oil resulted in a slight increase in rubber layer and 0.05 MPa reduction in Payne effect of uncured blends. The storage tensile modulus of vulcanizates at small strains decreased from 13.97 to 8.28 MPa after oil addition. Twenty parts per hundred rubber (phr) oil addition to binary blends caused rubber layer L to decrease from 0.45 to 0.42. The storage tensile modulus of the vulcanizates and its reduction with higher amplitudes were incontrovertibly high among the vulcanizates with lower oil content, which were 13.57 and 4.49 MPa, respectively. When any consequential change in mechanical properties of styrene–butadiene rubber (SBR)/butadiene rubber (BR) blends could not be observed at different TDAE addition time, increasing amount of oil in blends enhanced elongation at break, and decreased Shore A hardness and tensile strength.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2020 ◽  
Vol 10 (20) ◽  
pp. 7244
Author(s):  
Sung Ho Song

As eco-friendly “green tires” are being developed in the tire industry, conventionally used carbon black is being replaced with silica in rubber compounds. Generally, as a lubricant and dispersing agent, processing aids containing zinc ions have been employed as additives. However, as zinc is a heavy metal, alternative eco-friendly processing aids are required to satisfy worldwide environmental concerns. Furthermore, non-toxic, degradable, and renewable processing aids are required to improve the mechanical properties of the rubber composites. In this study, we evaluated the effects of diverse silica-based processing aids containing hydrocarbon, benzene, and hydroxyl functional groups on the mechanical properties of rubber composites. Among them, rubber composites that used amphiphilic terpene phenol resin (TPR) with hydrophilic silica showed compatibility with the hydrophobic rubber matrix and were revealed to improve the mechanical and fatigue properties. Furthermore, owing to the enhanced dispersion of silica in the rubber matrix, the TPR/styrene butadiene rubber composites exhibited enhanced wet grip and rolling resistance. These results indicated that TPR had multifunctional effects at low levels and has the potential for use as a processing aid in silica-based rubber composites in tire engineering applications.


2014 ◽  
Vol 3 (2) ◽  
pp. 1-4
Author(s):  
Indra Surya ◽  
Siswarni MZ

By using a semi-efficient vulcanization system, the effect of Epoxidized Natural Rubber (ENR) as a compatibilizer in silica-filled Styrene Butadiene Rubber (SBR) compound was carried out. The ENR was incorporated into the silica-filled SBR compound at 5.0 and 10.0 phr. An investigation was carried out to examine the effect of ENR on cure characteristics and tensile properties of the silica-filled SBR compound. It was found that ENR gave enhanced cure rate to the silica-filled SBR compound. ENR also exhibited a higher torque difference, tensile modulus, and tensile strength up to 10.0 phr. The study of rubber - filler interaction proved that the addition of ENR to the silica-filled SBR system improved the rubber - filler interaction.


2019 ◽  
Vol 33 (3) ◽  
pp. 413-431
Author(s):  
Zhengjun Wang ◽  
Yi Guo ◽  
Lei Yan ◽  
Jun Bian ◽  
Hongcai Liu ◽  
...  

Chemically reduced graphene (C- rGO) nanosheets were first prepared from graphene oxide (GO), and then the polypropylene (PP) composites synergistically reinforced–toughened by styrene–butadiene rubber (SBR), and C- rGO nanosheets were fabricated via melt blending. The mechanical properties of PP can be considerably improved by synergistically filling with C- rGO nanosheets and SBR, especially for the notched Izod impact strength (IS). The results from the X-ray diffraction, polarizing optical micrographs, scanning electron microscope, differential scanning calorimetric, dynamic mechanical analysis, and thermogravimetric analysis measurements reveal that: (1) the β-phase crystal structure of the PP is formed when the C- rGO and SBR are synergistically filled with PP and its formation plays a role for the enhancement of the impact strength for PP/SBR/C- rGO composites; (2) the dispersion of the C- rGO and SBR in the PP/SBR/C- rGO composites is homogeneous, indicating that synergistic incorporating method decreases the aggregation of nanosheets and thus increases the sites for dissipation of shock for impact energy in the PP/SBR/C- rGO composites; and (3) the thermal analysis shows high thermal stability for the PP/SBR/C- rGO composites.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.


2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


Author(s):  
Koushik Pal ◽  
Soumya Ghosh Chowdhury ◽  
Dipankar Mondal ◽  
Dipankar Chattopadhyay ◽  
Sanjay Kumar Bhattacharyya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document