Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model

2015 ◽  
Vol 49 (18) ◽  
pp. 10790-10796 ◽  
Author(s):  
Wenjie Liao ◽  
Hayo M. G. van der Werf ◽  
Jordy Salmon-Monviola
2019 ◽  
Vol 15 (2) ◽  
pp. 55-68
Author(s):  
András Polgár ◽  
Zoltán Kovács ◽  
Veronika Elekné Fodor ◽  
András Bidló

Abstract Environmental life cycle assessment (LCA) was developed as a tool for sustainable, decision-supporting environmental management. Applying agricultural sector-LCA in order to achieve both internal (comparative) and external (efficiency enhancing) benefits is a priority. Since the life-cycle assessment of products and processes attracts great interest, applying the method in agriculture is relevant. Our study undertakes a comparative environmental life-cycle assessment (LCA) of local arable crop production technologies used for the main cultivated plants: maize, sunflower, lucerne, cereals, and canola (environmental data in the territorial approach calculated on a 1 ha unit and in the quantitative approach calculated on 1 t of produce). We prepared an environmental inventory of the arable crop production technologies, constructed the life-cycle models, and executed the impact assessment. We also compiled an environmental ranking of technologies. In the impact interpretation, we compared the results with the values of short rotation energy plantations in each impact category. We analysed carbon footprints closely. The obtained results help better assess environmental impacts, climate risks, and climate change as they pertain to arable crop production technologies, which advances the selection of appropriate technologies adjusted to environmental sensitivities.


Author(s):  
M. von der Thannen ◽  
S. Hoerbinger ◽  
C. Muellebner ◽  
H. Biber ◽  
H. P. Rauch

AbstractRecently, applications of soil and water bioengineering constructions using living plants and supplementary materials have become increasingly popular. Besides technical effects, soil and water bioengineering has the advantage of additionally taking into consideration ecological values and the values of landscape aesthetics. When implementing soil and water bioengineering structures, suitable plants must be selected, and the structures must be given a dimension taking into account potential impact loads. A consideration of energy flows and the potential negative impact of construction in terms of energy and greenhouse gas balance has been neglected until now. The current study closes this gap of knowledge by introducing a method for detecting the possible negative effects of installing soil and water bioengineering measures. For this purpose, an environmental life cycle assessment model has been applied. The impact categories global warming potential and cumulative energy demand are used in this paper to describe the type of impacts which a bioengineering construction site causes. Additionally, the water bioengineering measure is contrasted with a conventional civil engineering structure. The results determine that the bioengineering alternative performs slightly better, in terms of energy demand and global warming potential, than the conventional measure. The most relevant factor is shown to be the impact of the running machines at the water bioengineering construction site. Finally, an integral ecological assessment model for applications of soil and water bioengineering structures should point out the potential negative effects caused during installation and, furthermore, integrate the assessment of potential positive effects due to the development of living plants in the use stage of the structures.


2021 ◽  
pp. 128580
Author(s):  
Ioan-Robert Istrate ◽  
Rafael Juan ◽  
Mario Martin-Gamboa ◽  
Carlos Domínguez ◽  
Rafael A. García-Muñoz ◽  
...  

2000 ◽  
Vol 5 (4) ◽  
pp. 238-238 ◽  
Author(s):  
M. Gorree ◽  
J. B. Guinée ◽  
G. Huppes ◽  
L. van Oers

2017 ◽  
Vol 586 ◽  
pp. 226-240 ◽  
Author(s):  
Ranjan Parajuli ◽  
Marie Trydeman Knudsen ◽  
Sylvestre Njakou Djomo ◽  
Andrea Corona ◽  
Morten Birkved ◽  
...  

2018 ◽  
Vol 203 ◽  
pp. 444-468 ◽  
Author(s):  
Lidiane La Picirelli de Souza ◽  
Electo Eduardo Silva Lora ◽  
José Carlos Escobar Palacio ◽  
Mateus Henrique Rocha ◽  
Maria Luiza Grillo Renó ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document