Optimal Design of Integrated Solar Power Plants Accounting for the Thermal Storage System and CO2 Mitigation through an Algae System

2016 ◽  
Vol 55 (41) ◽  
pp. 11003-11011 ◽  
Author(s):  
José Francisco Hernández-Martinez ◽  
Eusiel Rubio-Castro ◽  
Medardo Serna-González ◽  
Mahmoud M. El-Halwagi ◽  
José María Ponce-Ortega
2009 ◽  
Vol 131 (4) ◽  
Author(s):  
R. Gabbrielli ◽  
C. Zamparelli

This paper presents an optimal design procedure for internally insulated, carbon steel, molten salt thermal storage tanks for parabolic trough solar power plants. The exact size of the vessel and insulation layers and the shape of the roof are optimized by minimizing the total investment cost of the storage system under three technical constraints: remaining within the maximum allowable values of both temperature and stress in the steel structure, and avoiding excessive cooling and consequent solidification of the molten salt during long periods of no solar input. The thermal, mechanical and economic aspects have been integrated into an iterative step-by-step optimization procedure, which is shown to be effective through application to the case study of a 600MWh thermal storage system. The optimal design turns out to be an internally insulated, carbon steel storage tank characterized by a maximum allowable height of 11m and a diameter of 22.4m. The total investment cost is about 20% lower than that of a corresponding AISI 321H stainless steel storage tank without internal protection or insulation.


Author(s):  
Karthik Nithyanandam ◽  
Amey Barde ◽  
Reza Baghaei Lakeh ◽  
Richard Wirz

The ability to efficiently and cost-effectively incorporate thermal energy storage (TES) systems is an important advantage of concentrating solar power (CSP) in comparison to other intermittent forms of renewable energy, such as wind or photovoltaics. As such, TES allows CSP plants to continue to provide electricity to the grid even at times when the resource (the sun) is not available, such as cloud transients or at night. Advanced power cycle systems with supercritical carbon dioxide (sCO2) as the working fluid provide high power conversion efficiency because of high temperatures attained, and less compression work and are being explored for integration with concentrating solar power plants. Currently, there is no cost-effective way to store energy at high temperatures (>565 degree Celsius). The present work analyzes the thermal performance of a novel, cost-effective thermal storage system based on elemental sulfur as the storage media. The analysis is based on a detailed system-level computational modeling of the complex conjugate heat transfer and fluid flow phenomena at multiple scales to provide a scientific basis for engineering, designing and optimizing the novel thermal storage system for transient operation. The validation of the computational model based on data from experiments and full-scale plant operation is also reported. Our studies have shown sulfur-based TES to be a promising candidate for high temperature CSP.


Author(s):  
Valentina A. ◽  
Carmelo E. ◽  
Giuseppe M. ◽  
Rosa Di ◽  
Fabrizio Girardi ◽  
...  

2016 ◽  
Author(s):  
Sandra Álvarez de Miguel ◽  
Selvan Bellan ◽  
J. M. García de María ◽  
José González-Aguilar ◽  
Manuel Romero

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5339
Author(s):  
Giovanni Salvatore Sau ◽  
Valerio Tripi ◽  
Anna Chiara Tizzoni ◽  
Raffaele Liberatore ◽  
Emiliana Mansi ◽  
...  

Molten salts eutectics are promising candidates as phase change materials (PCMs) for thermal storage applications, especially considering the possibility to store and release heat at high temperatures. Although many compounds have been proposed for this purpose in the scientific literature, very few data are available regarding actual applications. In particular, there is a lack of information concerning thermal storage at temperatures around 600 °C, necessary for the coupling with a highly efficient Rankine cycle powered by concentrated solar power (CSP) plants. In this contest, the present work deals with a thermophysical behavior investigation of a storage heat exchanger containing a cost-effective and safe ternary eutectic, consisting of sodium chloride, potassium chloride, and sodium carbonate. This material was preliminarily and properly selected and characterized to comply with the necessary melting temperature and latent enthalpy. Then, an indirect heat exchanger was considered for the simulation, assuming aluminum capsules to confine the PCM, thus obtaining the maximum possible heat exchange surface and air at 5 bar as heat transfer fluid (HTF). The modelling was carried out setting the inlet and outlet air temperatures at, respectively, 290 °C and 550 °C, obtaining a realistic storage efficiency of around 0.6. Finally, a conservative investment cost was estimated for the storage system, demonstrating a real possible economic benefit in using these types of materials and heat exchange geometries, with the results varying, according to possible manufacturing prices, in a range from 25 to 40 EUR/kWh.


Sign in / Sign up

Export Citation Format

Share Document