From Lignin to Three-Dimensional Interconnected Hierarchically Porous Carbon with High Surface Area for Fast and Superhigh-Efficiency Adsorption of Sulfamethazine

2017 ◽  
Vol 56 (33) ◽  
pp. 9367-9375 ◽  
Author(s):  
Zhongshuai Chang ◽  
Jiangdong Dai ◽  
Atian Xie ◽  
Jinsong He ◽  
Ruilong Zhang ◽  
...  
2014 ◽  
Vol 7 (1) ◽  
pp. 335-342 ◽  
Author(s):  
Gadipelli Srinivas ◽  
Vaiva Krungleviciute ◽  
Zheng-Xiao Guo ◽  
Taner Yildirim

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Wan Nor Roslam Wan Isahak ◽  
Mohamed Wahab Mahamed Hisham ◽  
Mohd Ambar Yarmo

Porous carbon obtained by dehydrating agent, concentrated sulfuric acid (H2SO4), from biomass containing high cellulose (filter paper (FP), bamboo waste, and empty fruit bunches (EFB)) shows very high surface area and better thermal behavior. At room temperature (without heating), treatment of H2SO4removed all the water molecules in the biomass and left the porous carbon without emitting any gaseous byproducts. Brunauer-Emmett-Teller (BET) surface analysis has shown that bamboo-based carbon has good properties with higher surface area (507.8 m2/g), micropore area (393.3 m2/g), and better thermal behavior (compared to FP and EFB) without any activation or treatment process. By acid treatment of biomass, it was shown that higher carbon composition obtained from FP (85.30%), bamboo (77.72%), and EFB (76.55%) is compared to carbon from carbonization process. Under optimal sulfuric acid (20 wt.%) uses, high carbon yield has been achieved for FP (47.85 wt.%), bamboo (62.4 wt.%), and EFB (55.4 wt.%).


RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75728-75734 ◽  
Author(s):  
Huishan Shang ◽  
Yanjie Lu ◽  
Feng Zhao ◽  
Cong Chao ◽  
Bing Zhang ◽  
...  

Peanut shells were transformed into porous carbon with a high surface area through a simple ZnCl2-molten salt synthesis process.


Author(s):  
Ketki Lichade ◽  
Yizhou Jiang ◽  
Yayue Pan

Abstract Recently, many studies have investigated additive manufacturing of hierarchical surfaces with high surface area/volume (SA/V) ratios, and their performance has been characterized for applications in next-generation functional devices. Despite recent advances, it remains challenging to design and manufacture high SA/V ratio structures with desired functionalities. In this study, we established the complex correlations among the SA/V ratio, surface structure geometry, functionality, and manufacturability in the Two-Photon Polymerization (TPP) process. Inspired by numerous natural structures, we proposed a 3-level hierarchical structure design along with the mathematical modeling of the SA/V ratio. Geometric and manufacturing constraints were modeled to create well-defined three-dimensional hierarchically structured surfaces with a high accuracy. A process flowchart was developed to design the proposed surface structures to achieve the target functionality, SA/V ratio, and geometric accuracy. Surfaces with varied SA/V ratios and hierarchy levels were designed and printed. The wettability and antireflection properties of the fabricated surfaces were characterized. It was observed that the wetting and antireflection properties of the 3-level design could be easily tailored by adjusting the design parameter settings and hierarchy levels. Furthermore, the proposed surface structure could change a naturally-hydrophilic surface to near-superhydrophobic. Geometrical light trapping effects were enabled and the antireflection property could be significantly enhanced (>80% less reflection) by the proposed hierarchical surface structures. Experimental results implied the great potential of the proposed surface structures for various applications such as microfluidics, optics, energy, and interfaces.


Sign in / Sign up

Export Citation Format

Share Document