Hierarchically Porous Carbon Monoliths with High Surface Area from Bridged Poly(silsesquioxane) without Thermal Activation Process

2011 ◽  
Vol 18 (3) ◽  
pp. 032005
Author(s):  
G Hasegawa ◽  
K Kanamori ◽  
K Nakanishi ◽  
T Hanada
2020 ◽  
Vol 5 (6) ◽  
pp. 2008-2014
Author(s):  
Guangli Li ◽  
Xing Wei ◽  
Yingying Li ◽  
Wenfeng Mao ◽  
Guixiang Du ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 346 ◽  
Author(s):  
K. Pérez-Salcedo ◽  
Xuan Shi ◽  
Arunachala Kannan ◽  
Romeli Barbosa ◽  
Patricia Quintana ◽  
...  

This work reports the synthesis of N-doped porous carbon (NPC) with a high surface area from Sargassum spp. as a low-cost alternative for electrocatalyst production for the oxygen reduction reaction (ORR). Sargassum spp. was activated with potassium hydroxide at different temperatures (700, 750, and 800 °C) and then doped with pyridine (N700, N750, and N800). As a result of the activation process, the 800 °C sample showed a high surface area (2765 m2 g−1) and good onset potential (0.870 V) and current density (4.87 mA cm−2). The ORR performance of the electrocatalysts in terms of their current density was N800 > N750 > N700 > 750 > 800 > 700, while the onset potential decreased in the following order: N800 > 800 > 750 > 700 > N700 > N750. The fuel cell performance of the membrane electrode assembly (MEA) prepared with electrocatalyst synthesized at 750 °C and doped with pyridine was 12.72 mW cm−2, which was close to that from Pt/C MEA on both the anode and cathode (14.42 mW cm−2). These results indicate that NPCs are an alternative to the problem of Sargassum spp. accumulation in the Caribbean due to their high efficiency as electrocatalysts for ORR.


2014 ◽  
Vol 7 (1) ◽  
pp. 335-342 ◽  
Author(s):  
Gadipelli Srinivas ◽  
Vaiva Krungleviciute ◽  
Zheng-Xiao Guo ◽  
Taner Yildirim

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Wan Nor Roslam Wan Isahak ◽  
Mohamed Wahab Mahamed Hisham ◽  
Mohd Ambar Yarmo

Porous carbon obtained by dehydrating agent, concentrated sulfuric acid (H2SO4), from biomass containing high cellulose (filter paper (FP), bamboo waste, and empty fruit bunches (EFB)) shows very high surface area and better thermal behavior. At room temperature (without heating), treatment of H2SO4removed all the water molecules in the biomass and left the porous carbon without emitting any gaseous byproducts. Brunauer-Emmett-Teller (BET) surface analysis has shown that bamboo-based carbon has good properties with higher surface area (507.8 m2/g), micropore area (393.3 m2/g), and better thermal behavior (compared to FP and EFB) without any activation or treatment process. By acid treatment of biomass, it was shown that higher carbon composition obtained from FP (85.30%), bamboo (77.72%), and EFB (76.55%) is compared to carbon from carbonization process. Under optimal sulfuric acid (20 wt.%) uses, high carbon yield has been achieved for FP (47.85 wt.%), bamboo (62.4 wt.%), and EFB (55.4 wt.%).


RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75728-75734 ◽  
Author(s):  
Huishan Shang ◽  
Yanjie Lu ◽  
Feng Zhao ◽  
Cong Chao ◽  
Bing Zhang ◽  
...  

Peanut shells were transformed into porous carbon with a high surface area through a simple ZnCl2-molten salt synthesis process.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 854 ◽  
Author(s):  
Hanbo Xiao ◽  
Cheng-an Tao ◽  
Yujiao Li ◽  
Xianzhe Chen ◽  
Jian Huang ◽  
...  

Herein, a facile dopamine assisted one-pot synthesis approach is proposed for the preparation of porous carbon with a specific surface area (SSA) up to 2593 m2/g through the direct pyrolysis of a mixture of glucose, NH4Cl, and dopamine hydrochloride (DAH). The glucose is adopted as the carbon source and foaming agent, NH4Cl is used as the blowing agent, and DAH is served as collaborative carbon precursor as well as the nitrogen source for the first time. The effect of dopamine on the component, structure, and SSA of the as-prepared porous carbon materials are systematically studied. The moderate addition of dopamine, which influences the condensation and polymerization of glucose, matches better with ammonium salt decomposition. The SSA of porous carbon increases first and then decreases with the increasing amount of dopamine. In our case, the porous carbon produced with 5 wt% dopamine (PC-5) achieves the maximum SSA of up to 2593 m2/g. Accordingly, it also shows the greatest electrochemical performance. The PC-5 shows a capacitance of 96.7 F/g calculated from the discharge curve at 1 A/g. It also has a good capacitive rate capacity, the specific capacitance can still maintain 80%, even at a high current density of 10 A/g. Moreover, PC-5 exhibits a good cycling stability of 98.1% capacitive retention after 1000 cycles. The proposed method may show promising prospects for preparing porous carbon materials as advanced energy storage materials, storage, and catalyst supports.


Sign in / Sign up

Export Citation Format

Share Document