Significant Insight into the Origin of Reaction Barriers Determining Dihydrogen Activation by G13-P-P (G13 = Group 13 Element) and G15-P-Ga (G15 = Group 15 Element) Frustrated Lewis Pairs

Author(s):  
Zheng-Feng Zhang ◽  
Ming-Chung Yang ◽  
Ming-Der Su
2018 ◽  
Vol 5 (12) ◽  
pp. 1905-1915 ◽  
Author(s):  
Beilei Jiang ◽  
Qi Zhang ◽  
Li Dang

DFT calculations show that H2 and CO2 activation by bridged phosphane/borane frustrated Lewis pairs (FLPs) experiences a one-step concerted mechanism with small reaction barriers.


2021 ◽  
Author(s):  
Deborah Hartmann ◽  
Sven Braner ◽  
Lutz Greb

Bis(perchlorocatecholato)silane and bidentate N,N- or N,P-heteroleptic donors form hexacoordinated complexes. Depending on the ring strain and hemilability in the adducts, Frustrated Lewis pair reactivity with aldehydes and catalytic ammonia borane...


2021 ◽  
Author(s):  
Omar Sadek ◽  
Ghenwa Bouhadir ◽  
Didier Bourissou
Keyword(s):  
Group 13 ◽  

The synthesis, structure, and reactivity of mixed group 13/group 15 compounds (E13 = B, Al, Ga, In, Tl; E15 = N, P, Sb, Bi) featuring a rigid (ace)naphthalene, biphenylene or (thio)xanthene backbone are discussed in this review.


2021 ◽  
Vol 03 (02) ◽  
pp. 174-183
Author(s):  
P. Chidchob ◽  
S. A. H. Jansen ◽  
S. C. J. Meskers ◽  
E. Weyandt ◽  
N. P. van Leest ◽  
...  

The introduction of a chemical additive to supramolecular polymers holds high potential in the development of new structures and functions. In this regard, various donor- and acceptor-based molecules have been applied in the design of these noncovalent polymers. However, the incorporation of boron–nitrogen frustrated Lewis pairs in such architectures is still rare despite their many intriguing properties in catalysis and materials science. The limited choices of suitable boron derivatives represent one of the main limitations for the advancement in this direction. Here, we examine the use of the commercially available tris(pentafluorophenyl)borane with various triphenylamine derivatives to create supramolecular B–N charge transfer systems. Our results highlight the importance of a proper balance between the donor/acceptor strength and the driving force for supramolecular polymerization to achieve stable, long-range ordered B–N systems. Detailed analyses using electron paramagnetic resonance and optical spectroscopy suggest that tris(pentafluorophenyl)borane displays complex behavior with the amide-based triphenylamine supramolecular polymers and may interact in dimers or larger chiral aggregates, depending on the specific structure of the triphenylamines.


Sign in / Sign up

Export Citation Format

Share Document