Biosynthetic Pathway for Ethyl Butyrate Production in Saccharomyces cerevisiae

2020 ◽  
Vol 68 (14) ◽  
pp. 4252-4260 ◽  
Author(s):  
Yanrui Ma ◽  
Qingbo Deng ◽  
Yongjing Du ◽  
Jinying Ren ◽  
Yefu Chen ◽  
...  
Author(s):  
Rui Ma ◽  
Ping Su ◽  
Juan Guo ◽  
Baolong Jin ◽  
Qing Ma ◽  
...  

(+)-Borneol is a desirable monoterpenoid with effective anti-inflammatory and analgesic effects that is known as soft gold. (+)-bornyl diphosphate synthase is the key enzyme in the (+)-borneol biosynthesis pathway. Despite several reported (+)-bornyl diphosphate synthase genes, relatively low (+)-borneol production hinders the attempts to synthesize it using microbial fermentation. Here, we identified the highly specific (+)-bornyl diphosphate synthase CbTPS1 from Cinnamomum burmanni. An in vitro assay showed that (+)-borneol was the main product of CbTPS1 (88.70% of the total products), and the Km value was 5.11 ± 1.70 μM with a kcat value of 0.01 s–1. Further, we reconstituted the (+)-borneol biosynthetic pathway in Saccharomyces cerevisiae. After tailored truncation and adding Kozak sequences, the (+)-borneol yield was improved by 96.33-fold to 2.89 mg⋅L–1 compared with the initial strain in shake flasks. This work is the first reported attempt to produce (+)-borneol by microbial fermentation. It lays a foundation for further pathway reconstruction and metabolic engineering production of this valuable natural monoterpenoid.


Author(s):  
Zhi-Jiao Sun ◽  
Jia-Zhang Lian ◽  
Li Zhu ◽  
Yi-Qi Jiang ◽  
Guo-Si Li ◽  
...  

Ergosterol, a terpenoid compound produced by fungi, is an economically important metabolite serving as the direct precursor of steroid drugs. Herein, ergsosterol biosynthetic pathway modification combined with storage capacity enhancement was proposed to synergistically improve the production of ergosterol in Saccharomyces cerevisiae. S. cerevisiae strain S1 accumulated the highest amount of ergosterol [7.8 mg/g dry cell weight (DCW)] among the wild-type yeast strains tested and was first selected as the host for subsequent metabolic engineering studies. Then, the push and pull of ergosterol biosynthesis were engineered to increase the metabolic flux, overexpression of the sterol acyltransferase gene ARE2 increased ergosterol content to 10 mg/g DCW and additional overexpression of a global regulatory factor allele (UPC2-1) increased the ergosterol content to 16.7 mg/g DCW. Furthermore, considering the hydrophobicity sterol esters and accumulation in lipid droplets, the fatty acid biosynthetic pathway was enhanced to expand the storage pool for ergosterol. Overexpression of ACC1 coding for the acetyl-CoA carboxylase increased ergosterol content from 16.7 to 20.7 mg/g DCW. To address growth inhibition resulted from premature accumulation of ergosterol, auto-inducible promoters were employed to dynamically control the expression of ARE2, UPC2-1, and ACC1. Consequently, better cell growth led to an increase of ergosterol content to 40.6 mg/g DCW, which is 4.2-fold higher than that of the starting strain. Finally, a two-stage feeding strategy was employed for high-density cell fermentation, with an ergosterol yield of 2986.7 mg/L and content of 29.5 mg/g DCW. This study provided an effective approach for the production of ergosterol and other related terpenoid molecules.


2019 ◽  
Vol 8 (5) ◽  
pp. 968-975 ◽  
Author(s):  
Si Cheng ◽  
Xue Liu ◽  
Guozhen Jiang ◽  
Jihua Wu ◽  
Jin-lai Zhang ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanfei Zhang ◽  
Stephan Lane ◽  
Jhong-Min Chen ◽  
Sarah K. Hammer ◽  
Jake Luttinger ◽  
...  

Abstract Background Branched-chain higher alcohols (BCHAs), including isobutanol and 2-methyl-1-butanol, are promising advanced biofuels, superior to ethanol due to their higher energy density and better compatibility with existing gasoline infrastructure. Compartmentalizing the isobutanol biosynthetic pathway in yeast mitochondria is an effective way to produce BCHAs from glucose. However, to improve the sustainability of biofuel production, there is great interest in developing strains and processes to utilize lignocellulosic biomass, including its hemicellulose component, which is mostly composed of the pentose xylose. Results In this work, we rewired the xylose isomerase assimilation and mitochondrial isobutanol production pathways in the budding yeast Saccharomyces cerevisiae. We then increased the flux through these pathways by making gene deletions of BAT1, ALD6, and PHO13, to develop a strain (YZy197) that produces as much as 4 g/L of BCHAs (3.10 ± 0.18 g isobutanol/L and 0.91 ± 0.02 g 2-methyl-1-butanol/L) from xylose. This represents approximately a 28-fold improvement on the highest isobutanol titers obtained from xylose previously reported in yeast and the first report of 2-methyl-1-butanol produced from xylose. The yield of total BCHAs is 57.2 ± 5.2 mg/g xylose, corresponding to ~ 14% of the maximum theoretical yield. Respirometry experiments show that xylose increases mitochondrial activity by as much as 7.3-fold compared to glucose. Conclusions The enhanced levels of mitochondrial BCHA production achieved, even without disrupting ethanol byproduct formation, arise mostly from xylose activation of mitochondrial activity and are correlated with slow rates of sugar consumption.


1976 ◽  
Vol 22 (11) ◽  
pp. 1664-1667 ◽  
Author(s):  
Gary S. Gray ◽  
J. K. Bhattacharjee

A rapid assay is described for homocitrate synthase (EC 4.1.3.21) of the lysine biosynthetic pathway of Saccharomyces cerevisiae. The α-ketoglutarate-dependent cleavage of acetyl-coA was measured spectrophotometrically as decrease in absorbance at 600 nm in the presence of 2, 6-dichlorophenol-indophenol and enzyme from the wild-type strain X2180. This activity was also present in a citrate synthaseless glutamate auxotroph glu3, and the activity was inhibited by 5 mML-lysine. Radioactive homocitric acid was obtained from a reaction mixture containing [1-14C]acetyl-coA. Homocitrate synthase activity was dependent upon time, both substrates, and enzyme. The activity exhibited a pH and temperature optimum of 7.5–8.0 and 32 °C, respectively, and was inhibited by metal-chelating and sulfhydryl-binding agents.


Microbiology ◽  
2003 ◽  
Vol 149 (6) ◽  
pp. 1447-1460 ◽  
Author(s):  
Raymond Wightman ◽  
Peter A. Meacock

The THI5 gene family of Saccharomyces cerevisiae comprises four highly conserved members named THI5 (YFL058w), THI11 (YJR156c), THI12 (YNL332w) and THI13 (YDL244w). Each gene copy is located within the subtelomeric region of a different chromosome and all are homologues of the Schizosaccharomyces pombe nmt1 gene which is thought to function in the biosynthesis of hydroxymethylpyrimidine (HMP), a precursor of vitamin B1, thiamin. A comprehensive phylogenetic study has shown that the existence of THI5 as a gene family is exclusive to those yeasts of the Saccharomyces sensu stricto subgroup. To determine the function and redundancy of each of the S. cerevisiae homologues, all combinations of the single, double, triple and quadruple deletion mutants were constructed using a PCR-mediated gene-disruption strategy. Phenotypic analyses of these mutant strains have shown the four genes to be functionally redundant in terms of HMP formation for thiamin biosynthesis; each promotes synthesis of HMP from the pyridoxine (vitamin B6) biosynthetic pathway. Furthermore, growth studies with the quadruple mutant strain support a previous proposal of an alternative HMP biosynthetic pathway that operates in yeast under anaerobic growth conditions. Comparative analysis of mRNA levels has revealed subtle differences in the regulation of the four genes, suggesting that they respond differently to nutrient limitation.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Biswendu Chaudhuri ◽  
Susham Ingavale ◽  
Anand K Bachhawat

Mutants in the adenine biosynthetic pathway of yeasts (ade1 and ade2 of Saccharomyces cerevisiae, ade6 and ade7 of Schizosaccharomyces pombe) accumulate an intense red pigment in their vacuoles when grown under adenine-limiting conditions. The precise events that determine the formation of the pigment are however, still unknown. We have begun a genetic investigation into the nature and cause of pigmentation of ade6 mutants of S. pombe and have discovered that one of these pigmentation defective mutants, apd1 (adenine pigmentation defective), is a strict glutathione auxotroph. The gene apd1  + was found to encode the first enzyme in glutathione biosynthesis, γ-glutamylcysteine synthetase, gcs1  +. This gene when expressed in the mutant could confer both glutathione prototrophy and the characteristic red pigmentation, and disruption of the gene led to a loss in both phenotypes. Supplementation of glutathione in the medium, however, could only restore growth but not the pigmentation because the cells were unable to achieve sufficient intracellular levels of glutathione. Disruption of the second enzyme in glutathione biosynthesis, glutathione synthetase, gsh2  +, also led to glutathione auxotrophy, but only a partial defect in pigment formation. A reevaluation of the major amino acids previously reported to be present in the pigment indicated that the pigment is probably a glutathione conjugate. The ability of vanadate to inhibit pigment formation indicated that the conjugate was transported into the vacuole through a glutathione-conjugate pump. This was further confirmed using strains of S. cerevisiae bearing disruptions in the recently identified glutathione-conjugate pump, YCF1, where a significant reduction in pigment formation was observed. The pump of S. pombe is distinct from the previously identified vacuolar pump, hmt1p, for transporting cadystin peptides into vacuoles of S. pombe.


2013 ◽  
Vol 41 (5) ◽  
pp. 339-343 ◽  
Author(s):  
Selma Ateş ◽  
Burcu Türk ◽  
Emine Bayraktar ◽  
Afife Güvenç

Sign in / Sign up

Export Citation Format

Share Document