Pseudoternary Systems of Deep Eutectic Solvents + tert-Butanol + Water at T = 288.15 K, 298.15 K, and 308.15 K: Liquid–Liquid Equilibrium and Ability for Syringic Acid/Eugenol Separation

Author(s):  
Kangling Yin ◽  
Li Chen ◽  
Feng Liu ◽  
Taotao Fan ◽  
Zongcheng Yan
2018 ◽  
Author(s):  
◽  
Sanele Enough Msibi

Air pollution by combustion of fossil fuels is of global concern in this decade and beyond. The presence of nitrogen and sulphur impurities pose deleterious effects to refinery equipment, the environment, and human health. Therefore, many governments continue to impose stringent environmental regulations and standards on transportation fuels emissions. The current study evaluates alternate processing solutions to complement or replace the currently used processes to refine these impurities to meet the increasingly stringent fuel standards. This study evaluates the use of a class extractive solvents called Deep Eutectic Solvents (DES) for the removal of basic nitrogen impurities from refining streams by liquid-liquid extraction. This process is evinced as energy saving and environmentally friendly. The removal of pyridine and quinoline by the direct analytical method with choline chloride based deep eutectic solvent (DES) was studied. Liquid-liquid equilibrium measurements data were undertaken at 298.15 K and atmospheric pressure for n-heptane + pyridine/quinoline + [choline chloride + glycerol] DES and n-heptane + pyridine/quinoline + [choline chloride + ethylene glycol] DES systems. The obtained data were then regressed using the Non Random Two Liquid and Universal Quasi-Chemical models activity coefficient, and their mathematical reliability was validated using the Othmer Tobias and Hand correlations. A mixture of choline chloride and glycerol (DES1) showed greater extraction potential for basic nitrogen containing compounds compared to choline chloride and ethylene glycol with a distribution coefficient and selectivity of 22.7 and 2056 for pyridine, and 3.3 and 164.9 for quinoline respectively. The studied solvents showed comparability to organic and ionic liquids solvents in selectivity and distribution coefficients. The obtained liquid-liquid equilibrium data can be used in the design of a solvent extraction equipment, as phase diagrams plays an important role in separation process design.


Author(s):  
Hemayat Shekaari ◽  
Masumeh Mokhtarpour ◽  
Paria Ardi Samberan ◽  
Behrang Golmohammadi ◽  
Saeideh Gharouni Fattah ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 336
Author(s):  
Fang Bai ◽  
Chao Hua ◽  
Jing Li

The separation of benzene and cyclohexane azeotrope is one of the most challenging processes in the petrochemical industry. In this paper, deep eutectic solvents (DES) were used as solvents for the separation of benzene and cyclohexane. DES1 (1:2 mix of tetrabutylammonium bromide (TBAB) and levulinic acid (LA)), DES2 (1:2 mix of TBAB and ethylene glycol (EG)) and DES3 (1:2 mix of ChCl (choline chloride) and LA) were used as entrainers, and vapor-liquid equilibrium (VLE) measurements at atmospheric pressure revealed that a DES comprised of a 2:1 ratio of LA and TBAB could break this azeotrope with relative volatility (αij) up to 4.763. Correlation index suggested that the NRTL modelling approach fitted the experimental data very well. Mechanism of extractive distillation gained from FT-IR revealed that with hydrogen bonding and π–π bond interactions between levulinic acid and benzene could be responsible for the ability of this entrainer to break the azeotrope.


Sign in / Sign up

Export Citation Format

Share Document