Peng–Robinson Equation of State Model for Polycyclic Aromatic Hydrocarbons and Long-Chain Hydrocarbons Solubilities in Supercritical Fluids. Correlations Based on Solute Molecular Properties

2018 ◽  
Vol 63 (11) ◽  
pp. 4061-4075 ◽  
Author(s):  
Santiago G. H. Peck-Schrage ◽  
Enrique R. Bazúa-Rueda
Author(s):  
Fumiya Nakano ◽  
Tomohide Goma ◽  
Satoshi Suganuma ◽  
Etsushi Tsuji ◽  
Naonobu Katada

A silica-monolayer loaded on alumina with weak Brønsted acid sites and large pore size can selectively dealkylate alkyl polycyclic aromatics to long-chain alkanes and polycyclic aromatics for production of chemicals and fuel.


2013 ◽  
Vol 79 (8) ◽  
pp. 2692-2702 ◽  
Author(s):  
Khajamohiddin Syed ◽  
Aleksey Porollo ◽  
Ying Wai Lam ◽  
Paul E. Grimmett ◽  
Jagjit S. Yadav

ABSTRACTCytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungusPhanerochaete chrysosporiumthat was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbonn-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidizedn-alkanes with various chain lengths (C9to C12and C15to C19), as well as alkyl side chains (C3to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).


1995 ◽  
Vol 110 (1-2) ◽  
pp. 283-297 ◽  
Author(s):  
A. Aoulmi ◽  
M. Bouroukba ◽  
R. Solimando ◽  
M. Rogalski

2001 ◽  
Vol 67 (12) ◽  
pp. 5735-5739 ◽  
Author(s):  
Qing-Shan Li ◽  
Jun Ogawa ◽  
Rolf D. Schmid ◽  
Sakayu Shimizu

ABSTRACT Cytochrome P450 BM-3, a self-sufficient P450 enzyme fromBacillus megaterium that catalyzes the subterminal hydroxylation of long-chain fatty acids, has been engineered into a catalyst for the oxidation of polycyclic aromatic hydrocarbons. The activities of a triplet mutant (A74G/F87V/L188Q) towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 160, 53, 109, 287, and 22/min, respectively. Compared with the activities of the wild type towards these polycyclic aromatic hydrocarbons, those of the mutant were improved by up to 4 orders of magnitude. The coupling efficiencies of the mutant towards naphthalene, fluorene, acenaphthene, acenaphthylene, and 9-methylanthracene were 11, 26, 5.4, 15, and 3.2%, respectively, which were also improved several to hundreds fold. The high activities of the mutant towards polycyclic aromatic hydrocarbons indicate the potential of engineering P450 BM-3 for the biodegradation of these compounds in the environment.


2021 ◽  
Author(s):  
Eman Afkar ◽  
Aly M. Hafez ◽  
Rashid I.H. Ibrahim ◽  
Munirah Aldayel

Abstract In this study, two bacterial strains isolated from an oil-contaminated soil, designated as AramcoS2 and AramcoS4 were able to degrade crude oil, long-chain n-alkanes of C10 to C20; (n-decane, n-undecane, n-dodecane, n-tridecane, n-tetradecane, n-pentadecane, n-hexadecane, n-heptadecane, n-octadecane n-nonadecane, and n-eicosane) and polycyclic aromatic hydrocarbons (PAHs) including biphenyl, naphthalene, and anthracene. Gas chromatography-mass spectrometry (GC-MS) technique was conducted to analyze and identify the crude oil residues after biodegradation. AramcoS2 and AramcoS4 were able to reduce the concentration of long-chain n-alkanes of C10-C20 efficiently on average by 77% of the original concentration. Both isolates could also degrade PAHs on average by 67% of the original concentration within 7 and 14 days of incubation at 30ºC, pH=6.8±0.2. The 16S rRNA gene sequences of AramcoS2 and S4 classified these isolates as Actinobacteria; well-known alkanes and PAHs degraders. The nucleotide sequences of AramcoS2 and AramcoS4 were submitted to the GenBank database under the accession numbers MN142506 and MN142551, respectively. Both isolates can be used to restore the environments contaminated with crude oil components. They should be of great practical significance both in bioremediation of soil contaminated with crude oil and bio-treatment of oil spills on surface water.


Sign in / Sign up

Export Citation Format

Share Document