large pore size
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 20)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 13 (23) ◽  
pp. 13386
Author(s):  
Young-Min Kim ◽  
Sumin Pyo ◽  
Hanie Hakimian ◽  
Kyung-Seun Yoo ◽  
Gwang-Hoon Rhee ◽  
...  

A kinetic analysis of non-catalytic pyrolysis (NCP) and catalytic pyrolysis (CP) of polypropylene (PP) with different catalysts was performed using thermogravimetric analysis (TGA) and kinetic models. Three kinds of low-cost natural catalysts were used to maximize the cost-effectiveness of the process: natural zeolite (NZ), bentonite, olivine, and a mesoporous catalyst, Al-MCM-41. The decomposition temperature of PP and apparent activation energy (Ea) were obtained from the TGA results at multiple heating rates, and a model-free kinetic analysis was performed using the Flynn–Wall–Ozawa model. TGA indicated that the maximum decomposition temperature (Tmax) of the PP was shifted from 464 °C to 347 °C with Al-MCM-41 and 348 °C with bentonite, largely due to their strong acidity and large pore size. Although olivine had a large pore size, the Tmax of PP was only shifted to 456 °C, because of its low acidity. The differential TG (DTG) curve of PP over NZ revealed a two-step mechanism. The Tmax of the first peak on the DTG curve of PP with NZ was 376 °C due to the high acidity of NZ. On the other hand, that of the second peak was higher (474 °C) than the non-catalytic reaction. The Ea values at each conversion were also decreased when using the catalysts, except olivine. At <0.5 conversion, the Ea obtained from the CP of PP with NZ was lower than that with the other catalysts: Al-MCM-41, bentonite, and olivine, in that order. The Ea for the CP of PP with NZ increased more rapidly, to 193 kJ/mol at 0.9 conversion, than the other catalysts.


2021 ◽  
pp. 113697
Author(s):  
Youwen Zhang ◽  
Xiaohan Chen ◽  
Ceming Wang ◽  
Hsueh-Chia Chang ◽  
Xiyun Guan

Author(s):  
Chao Wang ◽  
Duoling Xu ◽  
Ling Lin ◽  
Shujun Li ◽  
Wentao Hou ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5270
Author(s):  
Sung Soo Park ◽  
Sang-Wook Chu ◽  
Liyi Shi ◽  
Shuai Yuan ◽  
Chang-Sik Ha

Crystalline walled SBA-15 with large pore size were prepared using alkali and alkali earth metal ions (Na+, Li+, K+ and Ca2+). For this work, the ratios of alkali metal ions (Si/metal ion) ranged from 2.1 to 80, while the temperatures tested ranged from 500 to 700 °C. The SBA-15 prepared with Si/Na+ ratios ranging from 2.1 to 40 at 700 °C exhibited both cristobalite and quartz SiO2 structures in pore walls. When the Na+ amount increased (i.e., Si/Na increased from 80 to 40), the pore size was increased remarkably but the surface area and pore volume of the metal ion-based SBA-15 were decreased. When the SBA-15 prepared with Li+, K+ and Ca2+ ions (Si/metal ion = 40) was thermally treated at 700 °C, the crystalline SiO2 of quartz structure with large pore diameter (i.e., 802.5 Å) was observed for Ca+2 ion-based SBA-15, while no crystalline SiO2 structures were observed in pore walls for both the K+ and Li+ ions treated SBA-15. The crystalline SiO2 structures may be formed by the rearrangement of silica matrix when alkali or alkali earth metal ions are inserted into silica matrix at elevated temperature.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 799
Author(s):  
Shuaiqi Chen ◽  
Xuhui Wang ◽  
Weiyi Tong ◽  
Jianchuan Sun ◽  
Xiangyu Xu ◽  
...  

In this study, phosphorus-modified alumina with large pore size was synthesized through a coprecipitation method. The carbon-covered, phosphorus-modified alumina with large pores was prepared by impregnating with glucose and carbonizing to further improve the adsorption of organic dyes. The morphology and structure of these composites were characterized by various analysis methods, and Rhodamine B (RhB) adsorption was also examined in aqueous media. The results showed that the specific surface area and pore size of the phosphorus-modified alumina sample AP7 (prepared with a P/Al molar ratio of 0.07) reached 496.2 m2·g−1 and 21.9 nm, while the specific surface area and pore size of the carbon-covered phosphorus-modified alumina sample CAP7–27 (prepared by using AP7 as a carrier for glucose at a glucose/Al molar ratio of 0.27) reached 435.3 m2·g−1 and 21.2 nm. The adsorption experiment of RhB revealed that CAP7–27 had not only an equilibrium adsorption capacity of 198 mg·g−1, but also an adsorption rate of 162.5 mg·g−1 in 5 min. These superior adsorption effects can be attributed to the similar pore structures of CAP7–27 with those of alumina and the specific properties with those of carbon materials. Finally, the kinetic properties of these composites were also studied, which were found to be consistent with a pseudo-second-order kinetic model and Langmuir model for isothermal adsorption analysis. This study indicates that the prepared nanomaterials are expected to be promising candidates for efficient adsorption of toxic dyes.


Author(s):  
Fumiya Nakano ◽  
Tomohide Goma ◽  
Satoshi Suganuma ◽  
Etsushi Tsuji ◽  
Naonobu Katada

A silica-monolayer loaded on alumina with weak Brønsted acid sites and large pore size can selectively dealkylate alkyl polycyclic aromatics to long-chain alkanes and polycyclic aromatics for production of chemicals and fuel.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1183
Author(s):  
Xing Liu ◽  
Shaoqing Guo ◽  
Xin Li ◽  
Lijing Yuan ◽  
Hongyu Dong ◽  
...  

Pure KIT-5 and a series of Al-KT-X materials modified by different amounts of aluminum were synthesized by a direct hydrothermal method and acted as supports for the catalysts of a quinoline hydrodenitrification reaction with the NiW active phases supported. The results of X-ray diffraction (XRD), N2 isotherm absorption-desorption, scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) for the supports indicated that Al species were embedded into the framework of the KIT-5 materials with a large pore size, pore volume, and specific surface area. The Pyridine-Fourier transform infrared spectroscopy (Py-IR) result of the catalysts demonstrated that the addition of aluminum atoms enhanced the acidity of the catalysts. The results of the high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectra (XPS) characterizations for the sulfide catalysts indicated that the embedded Al species could facilitate the dispersion of active metals and the formation of the active phases. Among all the catalysts, NiW/Al-KT-40 showed the maximal hydrodenitrogenation conversion (HDNC) due to its open three-dimensional pore structure, appropriate acidity, and good dispersion of active metals.


Sign in / Sign up

Export Citation Format

Share Document