Calculating Soft-Sphere Ionic Radii for Solid-State Arrangements from Solution Measurements

Author(s):  
Megan N. Aardema ◽  
Jamison Koeman ◽  
Douglas A. Vander Griend
Keyword(s):  
2010 ◽  
Vol 49 (10) ◽  
pp. 4420-4432 ◽  
Author(s):  
Daniel Lundberg ◽  
Ingmar Persson ◽  
Lars Eriksson ◽  
Paola D’Angelo ◽  
Simone De Panfilis

2000 ◽  
Vol 55 (3-4) ◽  
pp. 243-247 ◽  
Author(s):  
Martin Trömel

Abstract Metallic radii rm are correlated with the ionic radii ri by linear relationships. For groups 1 up to 7 as well as for AI, Ga, In, Tl, Sn, and Pb the ionic radii refer to the maximum valences (oxidation states) as known from compounds according to rm ≈ 1.16 • (ri + 0.64) [Å], For groups 8 up to 12, rm ≈ 0.48 · (ri + 2.26) [Å] with valences W = 14 -G (G = group number). These valences are considered regular (Wr). For groups 1 up to 12, they obey the equation Wr = 7 -[G -71]. According to this equation all outer s electrons and the unpaired d electrons should be involved in chemical bonding, i.e. in the cohesion of the element in the solid state. From the melting temperatures and the atomic volumes it is concluded, however, that only 19 out of the 30 d-block elements have regular valences, namely the elements of groups 3, 5, 6, 10, 11 as well as Os, Ir, Zn, Cd, and possibly Ru. All of the non-regular valences are lower than the regular ones. Four of them are integers: Mn 3; Fe, Co 4; Re 6.


2014 ◽  
Vol 70 (a1) ◽  
pp. C718-C718 ◽  
Author(s):  
Daniel Lundberg

Using lanthanoid(III) ions as non-radioactive substitutes for the actinoid(III) ions in model compounds is commonplace in many nuclear research areas. For instance, highly radioactive americium(III) ions are often replaced by europium(III) ions, found at the same position in the lanthanoid series. There is, however, no structural evidence to support this replacement, a fact that proponents in many fields do not consider. By carefully comparing the available data sets, it becomes obvious that the visual overlap in the periodic table does not reflect the true ionic radii of these elements at all. Here, using structural data from both solution and solid state, we present a comparative study of the ionic radii of the two inner transition metal series.


Author(s):  
Ирина Юрьевна Котова ◽  
Татьяна Сергеевна Спиридонова ◽  
Юлия Монировна Кадырова ◽  
Александра Александровна Савина

В исследовании и получении новых фаз с ценными физико-химическими свойствами важное место отводится тройным соединениям с тетраэдрическим анионом, содержащим различные комбинации одно- и поливалентных катионов, в частности, тройным молибдатам и вольфраматам. Интерес представляют серебросодержащие тройные молибдаты AgA3R(MoO4)5, принадлежащие к структурному типу NaMg3In(MoO4)5 (триклинная сингония, пр. гр. P1, Z = 2) и обладающие достаточно высокой ионной проводимостью (10–3–10–2 См/cм). В связи с этим, целью даннойработы явилось установление возможности образования подобных соединений в молибдатных и вольфраматных системах серебра, цинка, индия и железа и выявление влияния природы тетраэдрического аниона и трехзарядных катионов на их получение и свойства.Синтез поликристаллических образцов осуществляли по керамической технологии. Методами исследования являлись дифференциально-термический и рентгенофазовый анализы.В результате выполнения работы получены новые тройные молибдаты AgZn3R(MoO4)5 (R = In, Fe), кристаллизующиеся в триклинной сингонии (пр. гр. P1, Z = 2). Определены последовательность химических превращений, протекающих при образовании этих соединений, их кристаллографические и термические характеристики. Параметры элементарной ячейки для индиевого соединения: a = 6.9920(4), b = 7.0491(4), c = 17.9196(9) Å, a = 87.692(5), b = 87.381(5),g = 79.173(5)°; для железного: a = 6.9229(3), b = 6.9828(4), c = 17.7574(8) Å, a = 87.943(4), b = 87.346(5), g = 78.882(5)°.Установлено, что серебросодержащие тройные вольфраматы цинка с индием и железом, обладающие подобной структурой, не образуются.         ЛИТЕРАТУРА 1. Котова И. Ю. Фазообразование в системе сучастием молибдатов серебра, кобальта и алюми-ния. Журнал неорганической химии. 2014;59(8):1066–1070. DOI: https://doi.org/10.7868/s0044457x140801332. Kotova I. Yu., Korsun V. P. Phase in the Ag2MoO4–MgMoO4–Al2(MoO4)3. Russ. J. Inorg. Chem. 2010;55(6):955–958. DOI: https//doi.org/10.1134/S00360236100602033. Kotova I. Yu., Korsun V. P. Phase formation inthe system involving silver, magnesium, and indiummolybdates. Russ. J. Inorg. Chem. 2010;55(12): 1965–1969. DOI: https//doi.org/10.1134/S00360236101202474. Kotova I. Yu., Belov D. A., Stefanovich S. Yu.Ag1–xMg1–xR1+x(MoO4)3 Ag+-conducting NASICON-likephases, where R = Al or Sc and 0 ≤ x ≤ 0.5. Russ. J. Inorg.Chem. 2011;56(8): 1189−1 193. DOI: https//doi.org/10.1134/S00360236110801225. Bouzidi C., Frigui W., Zid M. F. Synthèseet structure cr ystalline d'un matériau noirAgMnII 3(MnIII 0.26Al0.74)(MoO4)5. Acta CrystallographicaSection E Crystallographic Communications. 2015;71(3): 299–304. DOI: https//doi.org/10.1107/S20569890150033456. Nasri R., Chérif S. F., Zid M. F. Structure cristallinede la triple molybdate Ag0.90Al1.06Co2.94(MoO4)5. ActaCrystallographica Section E Crystallographic Communications.2015; 71(4): 388−391. DOI: https//doi.org/10.1107/s20569890150052907. Kotova I. Yu., Solodovnikov S. F., SolodovnikovaZ. A., Belov D. A., Stefanovich S. Yu., Savina A. A.,Khaikina E. G. New series of triple molybdatesAgA3R(MoO4)5 (A = Mg, R = Cr, Fe; A = Mn, R = Al, Cr,Fe, Sc, In) with framework structures and mobile silverion sublattices. Journal of Solid State Chemistry.2016;238: 121–128. DOI: https//doi.org/10.1016/j.jssc.2016.03.0038. Балсанова Л.В. Синтез кристаллов серебро-содержащих оксидных фаз на основе молибдена,изучение их структуры и свойств. Вестник ВСГУТУ. 2015;5: 63−69.9. Kotova I. Yu., Savina A. A., Khaikina E. G. Crystalstructure of new triple molybdate AgMg3Ga(MoO4)5from Rietveld refinement. Powder Diffraction.2017;32(4): 255–260. DOI: https//doi.org/10.1017/S088571561700081110. Kotova I. Yu., Savina A. A., Vandysheva A. I.,Belov D. A., Stefanovich S. Yu. Synthesis, cristal struc-ture and electrophysical properties of triple molybdatescontaining silver, gallium and divalent metals.Chimica Techno Acta. 2018;5(3): 132–143. DOI: https://doi.org/10.15826/chimtech.2018.5.3.0211. Klevtsova R. F., Vasiliev A. D., KozhevnikovaN. M., Glinskaya L. A., Kruglik A. I., Kotova I. Yu.Synthesis and crystal structural study of ternary molybdateNaMg3In(MoO4)5. Journal of StructuralChemistry. 1994;34(5): 784−788. DOI: https://doi.org/10.1007/BF0075358012. Hermanowicz K., Maczka M., Wolcyrz M., TomaszewskiP. E., Paściak M., Hanuza J. Crystal structure,vibrational properties and luminescence ofNaMg3Al(MoO4)5 crystal doped with Cr3+ ions. Journalof Solid State Chemistry. 2006;179(3): 685–695. DOI:https://doi.org/10.1016/j.jssc.2005.11.03213. Rietveld H. M. A profile refinement method fornuclear and magnetic structures. Journal of AppliedCrystallography. 1969;2: 65–71. DOI: https://doi.org/10.1107/s002188986900655814. Kohlmuller R., Faurie J.-P. Etude des systemesMoO3–Ag2MoO4 et MoO3–MO (M – Cu, Zn, Cd). Bull.Soc. Chim. France. 1968;11: 4379–4382.15. Трунов В. К., Ковба Л. М. О взаимодействииIn2O3 с WO3 и MoO3. Вестник Московского универ-ситета. Химия. 1967;1: 114–115.16. Трунов В. К., Ковба Л. М. О взаимодействиитрехокисей молибдена и вольфрама с полуторны-ми окисями железа и хрома. Известия АН СССР.Неорган. Материалы. 1966;2: 151–154.17. ICDD PDF-2 Data Base, Cards ## 00-049-0337,00-035-0765, 01-073-0554, 01-083-1701, 01-074-1791.18. Smith G. S., Snyder R. L. FN: A criterion forrating powder diffraction patterns and evaluating thereliability of powder-pattern indexing. Journal ofApplied Crystallography. 1979;12(1): 60–65.DOI: https//doi.org/10.1107/S002188987901178X19. Shannon R. D. Revised effective ionic radii andsystematic studies of interatomic distances in dalidesand chalcogenides. Acta Crystallographica Section A.1976; 32(5): 751–767. DOI: https://doi.org 10.1107/S056773947600155120. Порай-Кошиц М. А., Атовмян Л. О. Кристаллохимия и стереохимия координационных соединений молибдена. М.: Наука; 1974. 230 c.


2017 ◽  
Vol 35 (2) ◽  
pp. 362-367
Author(s):  
Murad Ali ◽  
Yaseen Iqbal ◽  
Raz Muhammad

Abstract A number of A5M5O17 (A = Na, Ca, Sr, La, Nd, Sm, Gd, Dy, Yb; B = Ti, Nb, Ta) type compounds were prepared by a solid-state sintering route and characterized in terms of structure, microstructure and microwave dielectric properties. The compatibility of rare earths with mixed niobate/tantalate and titanate phases was investigated. The larger ionic radii mismatch resulted in the formation of pyrochlore and/or mixed phases while in other cases, pure A5M5O17 phase was formed. The samples exhibited relative permittivity in the range of 35 to 82, quality factor (Q × fo) = 897 GHz to 11946 GHz and temperature coefficient of resonance frequency (τf) = -120 ppm/°C to 318 ppm/°C.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1103-C1103
Author(s):  
Olivier Gagne ◽  
Frank Hawthorne

A complete survey of bond lengths from the Inorganic Crystal Structure Database (ICSD) is presented for all atoms of the Periodic Table of Elements, bonded to oxygen and in different oxidation states and coordination numbers. From over 135,000 crystal structures, a total of 33,343 coordination polyhedra and 188,462 bond distances were collected after passing a rigorous filtering process. One hundred thirty-six (136) ions in four hundred seventy-three (473) different configurations (coordination numbers) resulted. First, the bondlength distributions are visually inspected. This leads to (1) the observation and visual interpretation of known phenomena (e.g. Jahn-Teller effect), and (2) the isolation of new phenomena, as trends that are less obvious in smaller case-studies become more noticeable. Next, different applications of the data are investigated. The completeness of the survey allows the reassessment of important parameters of the solid state: ionic radii, and bond-valence parameters. Of the 473 ionic radii derived in this study, 329 revisions are made to Shannon's list of radii [1] (of which 176 were estimates), and 144 new ionic radii are derived. Next, a systematic evaluation of all bond-valence parameters published to date is done for oxides. Furthermore, using a new method of derivation, 136 new pairs of bond-valence parameters are obtained. In comparison to the previous-best published bond-valence parameters, an overall average decrease in the r.m.s.d. to the valence-sum rule of 20.7% (12.6% when weighted) is observed for the 33,343 coordination polyhedra, using the new parameters. New equations to describe the bond-length to bond-valence relation are also investigated. From an optimization between the experimental and a priori bond-valences of 54 carefully-selected crystal structures, roughly 20 relatively simple equations were selected for testing. Following a rigorous evaluation, the current exponential equation was found to be a viable choice in describing the relation. Finally, bond-length and bond-valence ranges are assigned to the 473 configurations of the atoms. Whereas the bondlength ranges are a useful aid in structure refinement, the assignment of a bond-valence range to ions allows a priori analysis of site occupancy in crystal structures.


Author(s):  
T. J. Magee ◽  
J. Peng ◽  
J. Bean

Cadmium telluride has become increasingly important in a number of technological applications, particularly in the area of laser-optical components and solid state devices, Microstructural characterizations of the material have in the past been somewhat limited because of the lack of suitable sample preparation and thinning techniques. Utilizing a modified jet thinning apparatus and a potassium dichromate-sulfuric acid thinning solution, a procedure has now been developed for obtaining thin contamination-free samples for TEM examination.


Sign in / Sign up

Export Citation Format

Share Document