scholarly journals A size comparison of the lanthanoid(III) and actinoid(III) ionic radii

2014 ◽  
Vol 70 (a1) ◽  
pp. C718-C718 ◽  
Author(s):  
Daniel Lundberg

Using lanthanoid(III) ions as non-radioactive substitutes for the actinoid(III) ions in model compounds is commonplace in many nuclear research areas. For instance, highly radioactive americium(III) ions are often replaced by europium(III) ions, found at the same position in the lanthanoid series. There is, however, no structural evidence to support this replacement, a fact that proponents in many fields do not consider. By carefully comparing the available data sets, it becomes obvious that the visual overlap in the periodic table does not reflect the true ionic radii of these elements at all. Here, using structural data from both solution and solid state, we present a comparative study of the ionic radii of the two inner transition metal series.

2021 ◽  
pp. 089443932110122
Author(s):  
Dennis Assenmacher ◽  
Derek Weber ◽  
Mike Preuss ◽  
André Calero Valdez ◽  
Alison Bradshaw ◽  
...  

Computational social science uses computational and statistical methods in order to evaluate social interaction. The public availability of data sets is thus a necessary precondition for reliable and replicable research. These data allow researchers to benchmark the computational methods they develop, test the generalizability of their findings, and build confidence in their results. When social media data are concerned, data sharing is often restricted for legal or privacy reasons, which makes the comparison of methods and the replicability of research results infeasible. Social media analytics research, consequently, faces an integrity crisis. How is it possible to create trust in computational or statistical analyses, when they cannot be validated by third parties? In this work, we explore this well-known, yet little discussed, problem for social media analytics. We investigate how this problem can be solved by looking at related computational research areas. Moreover, we propose and implement a prototype to address the problem in the form of a new evaluation framework that enables the comparison of algorithms without the need to exchange data directly, while maintaining flexibility for the algorithm design.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 256
Author(s):  
Christian Rodenbücher ◽  
Kristof Szot

Transition metal oxides with ABO3 or BO2 structures have become one of the major research fields in solid state science, as they exhibit an impressive variety of unusual and exotic phenomena with potential for their exploitation in real-world applications [...]


Nanoscale ◽  
2021 ◽  
Author(s):  
Kalyan Ghosh ◽  
Martin Pumera

Room temperature electrochemical deposition of transition metal chalcogenide (MoSx) on 3D-printed nanocarbon fibers based electrodes for custom shaped solid-state supercapacitor.


2000 ◽  
Vol 658 ◽  
Author(s):  
Boris Wedel ◽  
Katsumasa Sugiyama ◽  
Kimio Itagaki ◽  
Hanskarl Müller-Buschbaum

ABSTRACTDuring the past decades the solid state chemistry of tellurium oxides has been enriched by a series of quaternary metallates. Interest attaches not only to the chemical and physical properties of these compounds, but also to their structure, which have been studied by modern methods. The partial similarity of earth alkaline metals and lead in solid state chemistry and their relationships in oxides opens a wide field of investigations. Eight new compounds in the systems Ba-M-Te-O (M= Nb, Ta) and Pb-M-Te-O (M = Mn, Ni, Cu, Zn) were prepared and structurally characterized: Ba2Nb2TeO10, Ba2M6Te2O21 (M = Nb, Ta) and the lead compounds PbMnTeO3, Pb3Ni4.5Te2.5O15, PbCu3TeO7, PbZn4SiTeO10 and the mixed compound PbMn2Ni6Te3O18. The structures of all compounds are based on frameworks of edge and corner sharing oxygen octahedra of the transition metal and the tellurium. Various different channel structures were observed and distinguished. The compounds were prepared by heating from mixtures of the oxides, and the single crystals were grown by flux method or solid state reactions on air. The synthesis conditions were modified to obtained microcrystalline material for purification and structural characterizations, which were carried out using a variety of tools including powder diffraction data and refinements of X-ray data. Relationships between lead transition metal tellurium oxides and the earth alkaline transition metals tellurium oxides are compared.


1968 ◽  
Vol 46 (22) ◽  
pp. 3443-3446 ◽  
Author(s):  
D. A. Edwards ◽  
R. N. Hayward

Some anhydrous transition metal acetates (Mn(II), Co(II), Cu(II), Ni(II), Zn(II), Ag(I), Mo(II), Ce(III), La(III)) have been prepared and their infrared spectra measured in the solid state. The infrared spectra have been related to established modes of bonding of the acetate group to metals. Thermal decompositions of the anhydrous acetates have been investigated by thermogravimetric analysis; magnetic moments and visible spectra have been measured.


2012 ◽  
Vol 3 (2) ◽  
pp. 391-397 ◽  
Author(s):  
Jianfeng Zhu ◽  
Takuya Kurahashi ◽  
Hiroshi Fujii ◽  
Gang Wu

Sign in / Sign up

Export Citation Format

Share Document