Machine-Guided Polymer Knowledge Extraction Using Natural Language Processing: The Example of Named Entity Normalization

Author(s):  
Pranav Shetty ◽  
Rampi Ramprasad
2019 ◽  
pp. 1-8 ◽  
Author(s):  
Tomasz Oliwa ◽  
Steven B. Maron ◽  
Leah M. Chase ◽  
Samantha Lomnicki ◽  
Daniel V.T. Catenacci ◽  
...  

PURPOSE Robust institutional tumor banks depend on continuous sample curation or else subsequent biopsy or resection specimens are overlooked after initial enrollment. Curation automation is hindered by semistructured free-text clinical pathology notes, which complicate data abstraction. Our motivation is to develop a natural language processing method that dynamically identifies existing pathology specimen elements necessary for locating specimens for future use in a manner that can be re-implemented by other institutions. PATIENTS AND METHODS Pathology reports from patients with gastroesophageal cancer enrolled in The University of Chicago GI oncology tumor bank were used to train and validate a novel composite natural language processing-based pipeline with a supervised machine learning classification step to separate notes into internal (primary review) and external (consultation) reports; a named-entity recognition step to obtain label (accession number), location, date, and sublabels (block identifiers); and a results proofreading step. RESULTS We analyzed 188 pathology reports, including 82 internal reports and 106 external consult reports, and successfully extracted named entities grouped as sample information (label, date, location). Our approach identified up to 24 additional unique samples in external consult notes that could have been overlooked. Our classification model obtained 100% accuracy on the basis of 10-fold cross-validation. Precision, recall, and F1 for class-specific named-entity recognition models show strong performance. CONCLUSION Through a combination of natural language processing and machine learning, we devised a re-implementable and automated approach that can accurately extract specimen attributes from semistructured pathology notes to dynamically populate a tumor registry.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
George Mastorakos ◽  
Aditya Khurana ◽  
Ming Huang ◽  
Sunyang Fu ◽  
Ahmad P. Tafti ◽  
...  

Background. Patients increasingly use asynchronous communication platforms to converse with care teams. Natural language processing (NLP) to classify content and automate triage of these messages has great potential to enhance clinical efficiency. We characterize the contents of a corpus of portal messages generated by patients using NLP methods. We aim to demonstrate descriptive analyses of patient text that can contribute to the development of future sophisticated NLP applications. Methods. We collected approximately 3,000 portal messages from the cardiology, dermatology, and gastroenterology departments at Mayo Clinic. After labeling these messages as either Active Symptom, Logistical, Prescription, or Update, we used NER (named entity recognition) to identify medical concepts based on the UMLS library. We hierarchically analyzed the distribution of these messages in terms of departments, message types, medical concepts, and keywords therewithin. Results. Active Symptom and Logistical content types comprised approximately 67% of the message cohort. The “Findings” medical concept had the largest number of keywords across all groupings of content types and departments. “Anatomical Sites” and “Disorders” keywords were more prevalent in Active Symptom messages, while “Drugs” keywords were most prevalent in Prescription messages. Logistical messages tended to have the lower proportions of “Anatomical Sites,”, “Disorders,”, “Drugs,”, and “Findings” keywords when compared to other message content types. Conclusions. This descriptive corpus analysis sheds light on the content and foci of portal messages. The insight into the content and differences among message themes can inform the development of more robust NLP models.


Author(s):  
Ayush Srivastav ◽  
Hera Khan ◽  
Amit Kumar Mishra

The chapter provides an eloquent account of the major methodologies and advances in the field of Natural Language Processing. The most popular models that have been used over time for the task of Natural Language Processing have been discussed along with their applications in their specific tasks. The chapter begins with the fundamental concepts of regex and tokenization. It provides an insight to text preprocessing and its methodologies such as Stemming and Lemmatization, Stop Word Removal, followed by Part-of-Speech tagging and Named Entity Recognition. Further, this chapter elaborates the concept of Word Embedding, its various types, and some common frameworks such as word2vec, GloVe, and fastText. A brief description of classification algorithms used in Natural Language Processing is provided next, followed by Neural Networks and its advanced forms such as Recursive Neural Networks and Seq2seq models that are used in Computational Linguistics. A brief description of chatbots and Memory Networks concludes the chapter.


2020 ◽  
Vol 10 (18) ◽  
pp. 6429
Author(s):  
SungMin Yang ◽  
SoYeop Yoo ◽  
OkRan Jeong

Along with studies on artificial intelligence technology, research is also being carried out actively in the field of natural language processing to understand and process people’s language, in other words, natural language. For computers to learn on their own, the skill of understanding natural language is very important. There are a wide variety of tasks involved in the field of natural language processing, but we would like to focus on the named entity registration and relation extraction task, which is considered to be the most important in understanding sentences. We propose DeNERT-KG, a model that can extract subject, object, and relationships, to grasp the meaning inherent in a sentence. Based on the BERT language model and Deep Q-Network, the named entity recognition (NER) model for extracting subject and object is established, and a knowledge graph is applied for relation extraction. Using the DeNERT-KG model, it is possible to extract the subject, type of subject, object, type of object, and relationship from a sentence, and verify this model through experiments.


2021 ◽  
pp. 817-828
Author(s):  
Abhishek Sharma ◽  
Amrita ◽  
Sudeshna Chakraborty ◽  
Shivam Kumar

2004 ◽  
Vol 9 (1) ◽  
pp. 53-68 ◽  
Author(s):  
Montserrat Arévalo Rodríguez ◽  
Montserrat Civit Torruella ◽  
Maria Antònia Martí

In the field of corpus linguistics, Named Entity treatment includes the recognition and classification of different types of discursive elements like proper names, date, time, etc. These discursive elements play an important role in different Natural Language Processing applications and techniques such as Information Retrieval, Information Extraction, translations memories, document routers, etc.


Author(s):  
Rinalds Vīksna ◽  
Inguna Skadiņa

Transformer-based language models pre-trained on large corpora have demonstrated good results on multiple natural language processing tasks for widely used languages including named entity recognition (NER). In this paper, we investigate the role of the BERT models in the NER task for Latvian. We introduce the BERT model pre-trained on the Latvian language data. We demonstrate that the Latvian BERT model, pre-trained on large Latvian corpora, achieves better results (81.91 F1-measure on average vs 78.37 on M-BERT for a dataset with nine named entity types, and 79.72 vs 78.83 on another dataset with seven types) than multilingual BERT and outperforms previously developed Latvian NER systems.


Sign in / Sign up

Export Citation Format

Share Document