Correlation between the Metal and Organic Components, Structure Property, and Gas-Adsorption Capacity of Metal–Organic Frameworks

Author(s):  
Shunsuke Yuyama ◽  
Hiromasa Kaneko
2020 ◽  
Author(s):  
Ali Raza ◽  
Arni Sturluson ◽  
Cory Simon ◽  
Xiaoli Fern

Virtual screenings can accelerate and reduce the cost of discovering metal-organic frameworks (MOFs) for their applications in gas storage, separation, and sensing. In molecular simulations of gas adsorption/diffusion in MOFs, the adsorbate-MOF electrostatic interaction is typically modeled by placing partial point charges on the atoms of the MOF. For the virtual screening of large libraries of MOFs, it is critical to develop computationally inexpensive methods to assign atomic partial charges to MOFs that accurately reproduce the electrostatic potential in their pores. Herein, we design and train a message passing neural network (MPNN) to predict the atomic partial charges on MOFs under a charge neutral constraint. A set of ca. 2,250 MOFs labeled with high-fidelity partial charges, derived from periodic electronic structure calculations, serves as training examples. In an end-to-end manner, from charge-labeled crystal graphs representing MOFs, our MPNN machine-learns features of the local bonding environments of the atoms and learns to predict partial atomic charges from these features. Our trained MPNN assigns high-fidelity partial point charges to MOFs with orders of magnitude lower computational cost than electronic structure calculations. To enhance the accuracy of virtual screenings of large libraries of MOFs for their adsorption-based applications, we make our trained MPNN model and MPNN-charge-assigned computation-ready, experimental MOF structures publicly available.<br>


2021 ◽  
Vol 27 (19) ◽  
Author(s):  
Syed Meheboob Elahi ◽  
Mukul Raizada ◽  
Pradip Kumar Sahu ◽  
Sanjit Konar

2020 ◽  
Vol 124 (49) ◽  
pp. 26801-26813
Author(s):  
Dayton J. Vogel ◽  
Zachary R. Lee ◽  
Caitlin A. Hanson ◽  
Susan E. Henkelis ◽  
Caris M. Smith ◽  
...  

2016 ◽  
Vol 138 (10) ◽  
pp. 3371-3381 ◽  
Author(s):  
Yong Yan ◽  
Michal Juríček ◽  
François-Xavier Coudert ◽  
Nicolaas A. Vermeulen ◽  
Sergio Grunder ◽  
...  

ChemSusChem ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 1543-1553 ◽  
Author(s):  
Nicolas Chanut ◽  
Sandrine Bourrelly ◽  
Bogdan Kuchta ◽  
Christian Serre ◽  
Jong-San Chang ◽  
...  

2016 ◽  
Vol 52 (14) ◽  
pp. 3003-3006 ◽  
Author(s):  
Linyi Bai ◽  
Binbin Tu ◽  
Yi Qi ◽  
Qiang Gao ◽  
Dong Liu ◽  
...  

Incorporating supramolecular recognition units, crown ether rings, into metal–organic frameworks enables the docking of metal ions through complexation for enhanced performance.


2021 ◽  
Vol 50 (14) ◽  
pp. 4757-4764
Author(s):  
Yan Yan Li ◽  
Dong Luo ◽  
Kun Wu ◽  
Xiao-Ping Zhou

This review article summarizes the assembly, structures, and topologies of gyroidal metal–organic frameworks. Their applications in gas adsorption, catalysis, sensors, and luminescent materials are also discussed in detail.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2309
Author(s):  
Po-Hsiang Tang ◽  
Pamela Berilyn So ◽  
Kueir-Rarn Lee ◽  
Yu-Lun Lai ◽  
Cheng-Shiuan Lee ◽  
...  

A variety of metal organic frameworks (MOFs) were synthesized and evaluated for their iodine adsorption capacity. Out of the MOFs tested, ZIF-8 showed the most promising result with an iodine vapor uptake of 876.6 mg/g. ZIF-8 was then incorporated into a polymer, polyethersulfone (PES), at different proportions to prepare mixed matrix membranes (MMMs), which were then used to perform further iodine adsorption experiments. With a mixing ratio of 40 wt % of ZIF-8, the iodine adsorption capacity reached 1387.6 mg/g, wherein an astounding 60% improvement in adsorption was seen with the MMMs prepared compared to the original ZIF-8 powder.


2021 ◽  
Author(s):  
Adam Sapnik ◽  
Christopher W. Ashling ◽  
Lauren K. Macreadie ◽  
Seok J. Lee ◽  
Tim Johnson ◽  
...  

<div><p>Disordered metal–organic frameworks are emerging as an attractive class of functional materials, however their applications in gas storage and separation have yet to be fully explored. Here, we investigate gas adsorption in the topologically disordered Fe-BTC framework and its crystalline counterpart, MIL‑100. Despite their similar chemistry and local structure, they exhibit very different sorption behaviour towards a range of industrial gases, noble gases and hydrocarbons. Virial analysis reveals that Fe-BTC has enhanced interaction strength with guest molecules compared to MIL‑100. Most notably, we observe striking discrimination between the adsorption of C<sub>3</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>8</sub> in Fe‑BTC, with over a twofold increase in the amount of C<sub>3</sub>H<sub>6</sub> being adsorbed than C<sub>3</sub>H<sub>8</sub>. Thermodynamic selectivity towards a range of industrially relevant binary mixtures is probed using ideal adsorbed solution theory (IAST). Together, this suggests the disordered material may possess powerful separation capabilities that are rare even amongst crystalline frameworks.</p></div>


Sign in / Sign up

Export Citation Format

Share Document