scholarly journals High-Resolution Coarse-Grained Model of Hydrated Anion-Exchange Membranes that Accounts for Hydrophobic and Ionic Interactions through Short-Ranged Potentials

2016 ◽  
Vol 13 (1) ◽  
pp. 245-264 ◽  
Author(s):  
Jibao Lu ◽  
Liam C. Jacobson ◽  
Yamila A. Perez Sirkin ◽  
Valeria Molinero
2011 ◽  
Vol 100 (3) ◽  
pp. 640a
Author(s):  
Tristan Bereau ◽  
Zun-Jing Wang ◽  
Markus Deserno

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1289 ◽  
Author(s):  
Dengpan Dong ◽  
Weiwei Zhang ◽  
Adam Barnett ◽  
Jibao Lu ◽  
Adri van Duin ◽  
...  

In this study, molecular dynamics (MD) simulations of hydrated anion-exchange membranes (AEMs), comprised of poly(p-phenylene oxide) (PPO) polymers functionalized with quaternary ammonium cationic groups, were conducted using multiscale coupling between three different models: a high-resolution coarse-grained (CG) model; Atomistic Polarizable Potential for Liquids, Electrolytes and Polymers (APPLE&P); and ReaxFF. The advantages and disadvantages of each model are summarized and compared. The proposed multiscale coupling utilizes the strength of each model and allows sampling of a broad spectrum of properties, which is not possible to sample using any of the single modeling techniques. Within the proposed combined approach, the equilibrium morphology of hydrated AEM was prepared using the CG model. Then, the morphology was mapped to the APPLE&P model from equilibrated CG configuration of the AEM. Simulations using atomistic non-reactive force field allowed sampling of local hydration structure of ionic groups, vehicular transport mechanism of anion and water, and structure equilibration of water channels in the membrane. Subsequently, atomistic AEM configuration was mapped to ReaxFF reactive model to investigate the Grotthuss mechanism in the hydroxide transport, as well as the AEM chemical stability and degradation mechanisms. The proposed multiscale and multiphysics modeling approach provides valuable input for the materials-by-design of novel polymeric structures for AEMs.


2011 ◽  
Vol 36 (11) ◽  
pp. 1521-1557 ◽  
Author(s):  
Guillaume Couture ◽  
Ali Alaaeddine ◽  
Frédéric Boschet ◽  
Bruno Ameduri

2021 ◽  
Author(s):  
Joshua Osuofa ◽  
Daniel Henn ◽  
Jinxiang Zhou ◽  
Anna Forsyth ◽  
Scott M. Husson

Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 311
Author(s):  
Muhammad Imran Khan ◽  
Majeda Khraisheh ◽  
Fares AlMomani

Recycling of acid from aqueous waste streams is crucial not only from the environmental point of view but also for maturing the feasible method (diffusion dialysis). Anion exchange membrane (AEM)–based diffusion dialysis process is one of the beneficial ways to recover acid from aqueous waste streams. In this article, the synthesis of a series of brominated poly (2, 6–dimethyl-1, 4–phenylene oxide) (BPPO)-based anion exchange membranes (AEMs) through quaternization with triphenylphosphine (TPP) were reported for acid recovery via diffusion dialysis process. The successful synthesis of the prepared membranes was confirmed by Fourier transform infrared (FTIR) spectroscopy. The as-synthesized anion exchange membranes represented water uptake (WR) of 44 to 66%, ion exchange capacity of (IEC) of 1.22 to 1.86 mmol/g, and linear swelling ratio (LSR) of 8 to 20%. They exhibited excellent thermal, mechanical, and acid stability. They showed homogeneous morphology. The acid recovery performance of the synthesized AEMs was investigated in a two compartment stack using simulated mixture of HCl and FeCl2 as feed solution at room temperature. For the synthesized anion exchange membranes TPP–43 to TPP–100, the diffusion dialysis coefficient of acid (UH+) was in the range of 6.7 to 26.3 (10−3 m/h) whereas separation factor (S) was in the range of 27 to 49 at 25 °C. Obtained results revealed that diffusion dialysis performance of the synthesized AEMs was higher than the commercial membrane DF–120B (UH+ = 0.004 m/h, S = 24.3) at room temperature. It showed that the prepared AEMs here could be excellent candidates for the diffusion dialysis process.


Sign in / Sign up

Export Citation Format

Share Document