Organic Functionalization at the Si(001) Dimer Vacancy Defect—Structure, Bonding, and Reactivity

2021 ◽  
Vol 125 (10) ◽  
pp. 5635-5646
Author(s):  
Jan-Niclas Luy ◽  
Ralf Tonner
2021 ◽  
Author(s):  
Jan-Niclas Luy ◽  
Ralf Tonner

In this density functional theory study, the influence of the dimer vacancy on the reactivity of the Si(001) surface is investigated. To this end, electronic and structural properties of the defect are analyzed. Band structure calculations reveal a higher-lying valence band which would suggest increased reactivity. However, the opposite is found when organic molecules for interface formation (acetylene, ethylene and cyclooctyne) are adsorbed at the defect. Significant reaction barriers have to be overcome in order to form bonds with defect atoms, while adsorption on the pristine surface is mostly direct. This suggests the presence of a, rather weak, Si-Si bond across the defect which must be dissociated before organic adsorbates can react. A rich adsorption and reaction network is found in addition to the structures known from the pristine surface. All three investigated adsorbates show different bonding characteristics. For acetylene and ethylene, the preferred thermodynamic sink is the insertion into the defect, with the latter molecule even dissociating. Bulky cyclooctyne on the other hand avoids reaction with the defect due to steric demands imposed by the small defect cavity. The DV has no effect on reactivity of neighboring dimers. A combination of defect creation and hydrogen-precoverage could be a promising approach for selective surface functionalization. We thus show the influence of a non-ideal surface on organic functionalization and interface build-up reactions for a prototypical interface. <br>


Author(s):  
D. Faulkner ◽  
G.W. Lorimer ◽  
H.J. Axon

It is now generally accepted that meteorites are fragments produced by the collision of parent bodies of asteroidal dimensions. Optical metallographic evidence suggests that there exists a group of iron meteorites which exhibit structures similar to those observed in explosively shock loaded iron. It seems likely that shock loading of meteorites could be produced by preterrestrial impact of their parent bodies as mentioned above.We have therefore looked at the defect structure of one of these meteorites (Trenton) and compared the results with those made on a) an unshocked ‘standard’ meteorite (Canyon Diablo)b) an artificially shocked ‘standard’ meteorite (Canyon Diablo) andc) an artificially shocked specimen of pure α-iron.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
J.A. Lambert ◽  
P.S. Dobson

The defect structure of ion-implanted silicon, which has been annealed in the temperature range 800°C-1100°C, consists of extrinsic Frank faulted loops and perfect dislocation loops, together with‘rod like’ defects elongated along <110> directions. Various structures have been suggested for the elongated defects and it was argued that an extrinsically faulted Frank loop could undergo partial shear to yield an intrinsically faulted defect having a Burgers vector of 1/6 <411>.This defect has been observed in boron implanted silicon (1015 B+ cm-2 40KeV) and a detailed contrast analysis has confirmed the proposed structure.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


1986 ◽  
Vol 47 (C1) ◽  
pp. C1-867-C1-870
Author(s):  
J. F. BAUMARD ◽  
P. ABELARD ◽  
J . LECOMTE
Keyword(s):  

2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 489-494 ◽  
Author(s):  
J. Popović ◽  
E. Tkalčec ◽  
B. Gržeta ◽  
C. Goebbert ◽  
V. Ksenofontov ◽  
...  

2016 ◽  
Vol 40 (1-2) ◽  
pp. 103-109
Author(s):  
Zbigniew Grzesik ◽  
Anna Kaczmarska

Sign in / Sign up

Export Citation Format

Share Document